Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (968)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (219) Apply TBD filter
  • SARS-CoV-2 (42) Apply SARS-CoV-2 filter
  • Lgr5 (12) Apply Lgr5 filter
  • vGlut2 (10) Apply vGlut2 filter
  • Gad1 (9) Apply Gad1 filter
  • FOS (8) Apply FOS filter
  • CD68 (7) Apply CD68 filter
  • SLC32A1 (6) Apply SLC32A1 filter
  • Oxtr (6) Apply Oxtr filter
  • VGAT (6) Apply VGAT filter
  • MALAT1 (5) Apply MALAT1 filter
  • TH (5) Apply TH filter
  • GLI1 (5) Apply GLI1 filter
  • Sst (5) Apply Sst filter
  • Gad2 (5) Apply Gad2 filter
  • Nos1 (5) Apply Nos1 filter
  • HPV (5) Apply HPV filter
  • HIV-1 (5) Apply HIV-1 filter
  • Axin2 (4) Apply Axin2 filter
  • Cnr2 (4) Apply Cnr2 filter
  • Ifng (4) Apply Ifng filter
  • DRD1 (4) Apply DRD1 filter
  • CAMK2D (4) Apply CAMK2D filter
  • Vegfa (4) Apply Vegfa filter
  • SCN5A (4) Apply SCN5A filter
  • Penk (4) Apply Penk filter
  • OLFM4 (4) Apply OLFM4 filter
  • TUBB3 (4) Apply TUBB3 filter
  • Crh (4) Apply Crh filter
  • Cacna1c (4) Apply Cacna1c filter
  • Slc17a6 (4) Apply Slc17a6 filter
  • OPRM1 (4) Apply OPRM1 filter
  • Nts (4) Apply Nts filter
  • RYR2 (4) Apply RYR2 filter
  • VGluT1 (4) Apply VGluT1 filter
  • Il-6 (4) Apply Il-6 filter
  • CB2R (4) Apply CB2R filter
  • HER2 (4) Apply HER2 filter
  • Tgf-β1 (4) Apply Tgf-β1 filter
  • SARS-CoV-2  (4) Apply SARS-CoV-2  filter
  • 18 (4) Apply 18 filter
  • 31 (4) Apply 31 filter
  • Sox9 (3) Apply Sox9 filter
  • IL17A (3) Apply IL17A filter
  • COL1A1 (3) Apply COL1A1 filter
  • CD44 (3) Apply CD44 filter
  • KRT19 (3) Apply KRT19 filter
  • Ccl2 (3) Apply Ccl2 filter
  • FGFR1 (3) Apply FGFR1 filter
  • GFAP (3) Apply GFAP filter

Product

  • (-) Remove RNAscope filter RNAscope (968)

Research area

  • Neuroscience (251) Apply Neuroscience filter
  • Cancer (177) Apply Cancer filter
  • Development (72) Apply Development filter
  • Inflammation (67) Apply Inflammation filter
  • Covid (50) Apply Covid filter
  • Other: Methods (36) Apply Other: Methods filter
  • Pain (34) Apply Pain filter
  • HPV (32) Apply HPV filter
  • Infectious (29) Apply Infectious filter
  • Stem Cells (25) Apply Stem Cells filter
  • CGT (20) Apply CGT filter
  • Metabolism (17) Apply Metabolism filter
  • Immunotherapy (16) Apply Immunotherapy filter
  • Other: Heart (14) Apply Other: Heart filter
  • LncRNAs (13) Apply LncRNAs filter
  • HIV (12) Apply HIV filter
  • Infectious Disease (12) Apply Infectious Disease filter
  • Other: Kidney (12) Apply Other: Kidney filter
  • Reproduction (12) Apply Reproduction filter
  • Stem cell (12) Apply Stem cell filter
  • Endocrinology (10) Apply Endocrinology filter
  • Obesity (10) Apply Obesity filter
  • Other: Liver (10) Apply Other: Liver filter
  • Aging (8) Apply Aging filter
  • Heart (8) Apply Heart filter
  • lncRNA (8) Apply lncRNA filter
  • Other: Metabolism (8) Apply Other: Metabolism filter
  • Other: Zoological Disease (8) Apply Other: Zoological Disease filter
  • Alzheimer's Disease (7) Apply Alzheimer's Disease filter
  • Behavior (7) Apply Behavior filter
  • Itch (7) Apply Itch filter
  • Liver (7) Apply Liver filter
  • Psychiatry (7) Apply Psychiatry filter
  • diabetes (6) Apply diabetes filter
  • Other: Lung (6) Apply Other: Lung filter
  • Other: Ophthalmology (6) Apply Other: Ophthalmology filter
  • Stress (6) Apply Stress filter
  • Other: Endocrinology (5) Apply Other: Endocrinology filter
  • Addiction (4) Apply Addiction filter
  • Anxiety (4) Apply Anxiety filter
  • Bone (4) Apply Bone filter
  • Gastroenterology (4) Apply Gastroenterology filter
  • Immunology (4) Apply Immunology filter
  • Lung (4) Apply Lung filter
  • Neuroinflammation (4) Apply Neuroinflammation filter
  • Other: Heart Disease (4) Apply Other: Heart Disease filter
  • Teeth (4) Apply Teeth filter
  • Transcriptomics (4) Apply Transcriptomics filter
  • Tumor microenvironment (4) Apply Tumor microenvironment filter
  • Vaccines (4) Apply Vaccines filter

Category

  • Publications (968) Apply Publications filter
Cannabinoid CB2 receptors are upregulated via bivalent histone modifications and control primary afferent input to the spinal cord in neuropathic pain

The Journal of biological chemistry

2022 Apr 29

Ghosh, K;Zhang, GF;Chen, H;Chen, SR;Pan, HL;
PMID: 35500651 | DOI: 10.1016/j.jbc.2022.101999

Type-2 cannabinoid receptors (CB2, encoded by the Cnr2 gene) are mainly expressed in immune cells, and CB2 agonists normally have no analgesic effect. However, nerve injury upregulates CB2 in the dorsal root ganglion (DRG), following which CB2 stimulation reduces neuropathic pain. It is unclear how nerve injury increases CB2 expression or how CB2 activity is transformed in neuropathic pain. In this study, immunoblotting showed that spinal nerve ligation (SNL) induced a delayed and sustained increase in CB2 expression in the DRG and dorsal spinal cord synaptosomes. RNAscope in situ hybridization also showed that SNL substantially increased CB2 mRNA levels, mostly in medium and large DRG neurons. Furthermore, we found that the specific CB2 agonist JWH-133 significantly inhibits the amplitude of dorsal root-evoked glutamatergic excitatory postsynaptic currents in spinal dorsal horn neurons in SNL rats, but not in sham control rats; intrathecal injection of JWH-133 reversed pain hypersensitivity in SNL rats, but had no effect in sham control rats. In addition, chromatin immunoprecipitation-qPCR analysis showed that SNL increased enrichment of two activating histone marks (H3K4me3 and H3K9ac) and diminished occupancy of two repressive histone marks (H3K9me2 and H3K27me3) at the Cnr2 promoter in the DRG. In contrast, SNL had no effect on DNA methylation levels around the Cnr2 promoter. Our findings suggest that peripheral nerve injury promotes CB2 expression in primary sensory neurons via epigenetic bivalent histone modifications and that CB2 activation reduces neuropathic pain by attenuating nociceptive transmission from primary afferent nerves to the spinal cord.
Bovine gammaherpesvirus 6 tropism in its natural host

Journal of Comparative Pathology

2023 May 01

Fabian, R;Rosato, G;Stewart, J;Kipar, A;
| DOI: 10.1016/j.jcpa.2023.03.092

Introduction: Bovine gammaherpesvirus 6 (BoHV-6) is endemic in cattle in Europe with a high prevalence and is considered a commensal that is not associated with any disease processes. The present study aimed to identify the target cells of BoHV-6, investigating tissues tested positive for the virus by quantitative PCR. Materials and methods: Formalin-fixed, paraffin-embedded lung, spleen, bronchial lymph node and tongue samples from 10 cattle with high overall BoHV-6 copy numbers in the tissues were examined histologically and by RNA in-situ hybridization (RNAScope®) specific for BoHV-6 ORF73. Results: Viral ORF73 mRNA expression was extremely limited. A signal was only detected in individual lymphocytes within lymphatic follicles in bronchial lymph node and spleen, without any evidence of pathological changes in the tissue. There was no evidence of epithelial cell infection in oral mucosa or lung. Conclusions: The observed limited transcription of BoHV-6 ORF73 is consistent with previous findings with murine herpesvirus-68 (MHV-68), a gammaherpesvirus of which wood mice are a natural host. However, other gammaherpesviruses in their natural hosts, like ovine herpesvirus-2 (OvHV-2) in sheep, and MHV-68 in wood mice, infect lower airway epithelial cells. They vary regarding their site of latency, with T cells for OvHV-2 and B cells for MHV-68 and Epstein-Barr virus in humans. Our results indicate that BoHV-6 also infects and is latent in B cells, likely without any consequence to the host, representing a true commensal in cattle.
Nesfatin-1 regulates steroidogenesis in mouse Leydig cells

Peptides

2023 Jun 01

Ahn, C;Sun, S;Ha, J;Yang, H;
PMID: 37269882 | DOI: 10.1016/j.peptides.2023.171036

Nesfatin-1 is a polypeptide hormone known to regulate appetite and energy metabolism and is derived from the precursor protein nucleobindin 2 (NUCB2). Recent studies have shown that nesfatin-1 is expressed in many peripheral tissues in mice, including the reproductive organs. However, its function and regulation in the testis remain unknown. In this study, we investigated the expression of Nucb2 mRNA and nesfatin-1 protein in mouse Leydig cells and the Leydig cell line, TM3 cells. We also examined whether Nucb2 mRNA expression is regulated by gonadotropins and whether exogenous nesfatin-1 affects steroidogenesis in primary Leydig cells isolated from the testis and TM3 cells. We found that Nucb2 mRNA and nesfatin-1 protein were present in primary Leydig cells and TM3 cells, and nesfatin-1 binding sites were also found in both cell types. Nucb2 mRNA expression in testis, primary Leydig cells, and TM3 cells was increased after treatment with pregnant mare's serum gonadotropin and human chorionic gonadotropin. After nesfatin-1 treatment, the expression of steroidogenesis-related enzyme genes Cyp17a1 and Hsd3b was upregulated in primary Leydig cells and TM3 cells. Our results suggest that NUCB2/nesfatin-1 expression in mouse Leydig cells may be regulated through the hypothalamic-pituitary-gonadal axis and that nesfatin-1 produced by Leydig cells may locally regulate steroidogenesis in an autocrine manner. This study provides insight into the regulation of NUCB2/nesfatin-1 expression in Leydig cells and the effect of nesfatin-1 on steroidogenesis, which may have implications for male reproductive health.
Characterization of experimental Shuni virus infection in the mouse

Veterinary pathology

2023 Feb 17

Breithaupt, A;Sick, F;Golender, N;Beer, M;Wernike, K;
PMID: 36803054 | DOI: 10.1177/03009858231155402

Shuni virus (SHUV), an orthobunyavirus of the Simbu serogroup, was initially isolated in Nigeria in the 1960s, further detected in other African countries and in the Middle East, and is now endemic in Israel. Transmitted by blood-sucking insects, SHUV infection is associated with neurological disease in cattle and horses, and with abortion, stillbirth, or the birth of malformed offspring in ruminants. Surveillance studies also indicated a zoonotic potential. This study aimed to test the susceptibility of the well-characterized interferon (IFN)-α/β receptor knock-out mouse model (Ifnar-/-), to identify target cells, and to describe the neuropathological features. Ifnar-/-mice were subcutaneously infected with two different SHUV strains, including a strain isolated from the brain of a heifer showing neurological signs. The second strain represented a natural deletion mutant exhibiting a loss of function of the S-segment-encoded nonstructural protein NSs, which counteracts the host's IFN response. Here it is shown that Ifnar-/-mice are susceptible to both SHUV strains and can develop fatal disease. Histological examination confirmed meningoencephalomyelitis in mice as described in cattle with natural and experimental infections. RNA in situ hybridization was applied using RNA Scope for SHUV detection. Target cells identified included neurons and astrocytes, as well as macrophages in the spleen and gut-associated lymphoid tissue. Thus, this mouse model is particularly beneficial for the evaluation of virulence determinants in the pathogenesis of SHUV infection in animals.
Activation of 5-Hydroxytryptamine Receptor 4 Improves Colonic Barrier Function by Triggering Mucin 2 Production in a Mouse Model of Type 1 Diabetes

The American journal of pathology

2022 Mar 23

Han, C;Geng, Q;Qin, J;Li, Y;Yu, H;
PMID: 35337837 | DOI: 10.1016/j.ajpath.2022.03.002

Diabetes leads to intestinal barrier dysfunction. 5-Hydroxytryptamine receptor 4 (5-HT4R) is distributed in the colonic mucosa, but little is known about the role of 5-HT4R activation in diabetes-evoked colonic barrier dysfunction. This study investigates whether activation of 5-HT4Rs on goblet cells (GCs) protects the colon from commensal bacterial translocation in diabetic mice. Expression of 5-HT4R detected inside the colonic epithelium by RNAscope in situ hybridization was further observed within the mucin 2 (MUC2)-immunoreactive GCs. In diabetic mice, neither 5-HT4R transcription nor protein levels were altered compared with those in nondiabetic mice. Bacterial translocation was characterized by 16S rRNA RNAscope in situ hybridization and manifested in both crypts and lamina propria of the colon in diabetic mice. Moreover, mucin production and MUC2 expression were significantly decreased in diabetic mice. Furthermore, the loss of mitochondrial cristae of GCs and the down-regulation of mitofilin, the core protein maintaining mitochondrial homeostasis, were observed in diabetic mice. However, long-term treatment with 5-HT4R agonist in diabetic mice not only prevented bacterial penetration of the whole colonic mucosa but also promoted mucin production and MUC2 expression. Markedly, 5-HT4R agonist also restored the mitochondrial cristae of GCs and up-regulated mitofilin. However, co-administration of 5-HT4R antagonist abolished the effects of 5-HT4R agonist on diabetic mice. These findings indicate that 5-HT4R in colonic mucosa is an effective target for the treatment of diabetes-induced colonic mucous barrier dysfunction.
Radiochemical In Situ Hybridization in Developmental Studies of the Pineal Gland

Methods in molecular biology (Clifton, N.J.)

2022 Sep 30

Rath, MF;Møller, M;
PMID: 36180679 | DOI: 10.1007/978-1-0716-2593-4_10

Radiochemical in situ hybridization enables detection of gene expression in small areas of the brain, such as the developing pineal gland in rodents. The method combines determination of spatial and temporal gene expression profiles with semiquantitative analyses. We here describe the procedure of radiochemical in situ hybridization on the developing rat pineal gland ranging from preparation of fetal tissue for in situ hybridization to principles of quantification.
Current and future perspectives of single-cell multi-omics technologies in cardiovascular research

Nature Cardiovascular Research

2023 Jan 18

Tan, W;Seow, W;Zhang, A;Rhee, S;Wong, W;Greenleaf, W;Wu, J;
| DOI: 10.1038/s44161-022-00205-7

Single-cell technology has become an indispensable tool in cardiovascular research since its first introduction in 2009. Here, we highlight the recent remarkable progress in using single-cell technology to study transcriptomic and epigenetic heterogeneity in cardiac disease and development. We then introduce the key concepts in single-cell multi-omics modalities that apply to cardiovascular research. Lastly, we discuss some of the trending concepts in single-cell technology that are expected to propel cardiovascular research to the next phase of single-cell research.
Shank2 identifies a subset of glycinergic neurons involved in altered nociception in an autism model

Molecular autism

2023 Jun 14

Olde Heuvel, F;Ouali Alami, N;Aousji, O;Pogatzki-Zahn, E;Zahn, PK;Wilhelm, H;Deshpande, D;Khatamsaz, E;Catanese, A;Woelfle, S;Schön, M;Jain, S;Grabrucker, S;Ludolph, AC;Verpelli, C;Michaelis, J;Boeckers, TM;Roselli, F;
PMID: 37316943 | DOI: 10.1186/s13229-023-00552-7

Autism Spectrum Disorders (ASD) patients experience disturbed nociception in the form of either hyposensitivity to pain or allodynia. A substantial amount of processing of somatosensory and nociceptive stimulus takes place in the dorsal spinal cord. However, many of these circuits are not very well understood in the context of nociceptive processing in ASD.We have used a Shank2-/- mouse model, which displays a set of phenotypes reminiscent of ASD, and performed behavioural and microscopic analysis to investigate the role of dorsal horn circuitry in nociceptive processing of ASD.We determined that Shank2-/- mice display increased sensitivity to formalin pain and thermal preference, but a sensory specific mechanical allodynia. We demonstrate that high levels of Shank2 expression identifies a subpopulation of neurons in murine and human dorsal spinal cord, composed mainly by glycinergic interneurons and that loss of Shank2 causes the decrease in NMDAR in excitatory synapses on these inhibitory interneurons. In fact, in the subacute phase of the formalin test, glycinergic interneurons are strongly activated in wild type (WT) mice but not in Shank2-/- mice. Consequently, nociception projection neurons in laminae I are activated in larger numbers in Shank2-/- mice.Our investigation is limited to male mice, in agreement with the higher representation of ASD in males; therefore, caution should be applied to extrapolate the findings to females. Furthermore, ASD is characterized by extensive genetic diversity and therefore the findings related to Shank2 mutant mice may not necessarily apply to patients with different gene mutations. Since nociceptive phenotypes in ASD range between hyper- and hypo-sensitivity, diverse mutations may affect the circuit in opposite ways.Our findings prove that Shank2 expression identifies a new subset of inhibitory interneurons involved in reducing the transmission of nociceptive stimuli and whose unchecked activation is associated with pain hypersensitivity. We provide evidence that dysfunction in spinal cord pain processing may contribute to the nociceptive phenotypes in ASD.
The teleost polymeric Ig receptor counterpart in ballan wrasse (Labrus bergylta) differs from pIgR in higher vertebrates

Veterinary immunology and immunopathology

2022 May 13

Etayo, A;Bjørgen, H;Koppang, EO;Hordvik, I;
PMID: 35605416 | DOI: 10.1016/j.vetimm.2022.110440

As mucosal barriers in fish are the main sites where pathogens are encountered, mucosal immunity is crucial to avoid infection in the aquatic environment. In teleost fish, immunoglobulins are present in gut, gill and skin mucus, although not in the same amounts as in higher vertebrates. In mammals, the poly-Ig receptor (pIgR) is synthesized in epithelial cells and mediates the active transport of poly-immunoglobulins (pIgs) across the epithelium. During transport, a component of the pIgR, the secretory component (SC), is covalently bound to pIgs secreted into the mucus providing protection against proteases and avoiding degradation. The teleost pIgR gene does not show synteny to higher vertebrates, the overall structure of the protein is different (comprising two Ig domains) and its functional mechanisms remain unclear. The J-chain which is essential for pIgR-mediated transport of IgA and IgM in higher vertebrates is absent in teleost fish. The aim of the present study was to characterize the ballan wrasse (Labrus bergylta) pIgR and use it as a marker for further studies of mucosal immunity in this species. The pIgR gene was unambiguously identified. Unexpectedly, reverse transcription real time PCR (RT-qPCR) revealed highest abundance of pIgR mRNA in liver and significantly lower expression in mucosal organs such as foregut, hindgut, and skin. In situ hybridization showed pIgR-positive cells dispersed in the lamina propria while it was undetectable in epithelial cells of foregut and hindgut of ballan wrasse. A similar pattern was observed in Atlantic salmon. Liquid Chromatography-Mass Spectrometry (LC-MS/MS) analysis of IgM enriched mucus samples from gut, gill, skin, and bile gave relatively few matches to wrasse pIgR. Notably, the matching peptides were from the transmembrane (TM) and cytoplasmatic (Cy) region as well as the putative SC, indicating leakage from lysed cells rather than covalent bonds between IgM and SC. Altogether, the results indicate that pIgR has another (or at least an additional) function in wrasse. Another pIgR-like molecule (pIgRL) in ballan wrasse (comprising three Ig domains) was analyzed to see if this could be an alternative functional pIgR homolog. However, the presence of pIgRL mRNA in blood leukocytes and a relatively high expression in immune organs like spleen and head kidney pointed to a receptor function on a circulating leukocyte population. As significant amounts of IgM were found in bile of ballan wrasse further studies should consider the hepato-biliary route regarding IgM delivery to the gut lumen.
Modulation of Purinergic Signaling in Keratinocytes in Spared Nerve Injury Model of Neuropathic Pain

The Journal of Pain

2022 May 01

Isaeva, E;Mecca, C;Stucky, C;
| DOI: 10.1016/j.jpain.2022.03.025

Epidermal keratinocytes express various purinergic 2 receptors that play an essential role in cell growth, differentiation, and proliferation. In the conditions of injury, concentrations of extracellular adenosine triphosphate (ATP) may dramatically increase due to cell damage and inflammatory processes. In this situation activation of purinergic signaling in keratinocytes could act as a double-edged sword contributing to skin regeneration or cell apoptosis. As the role of keratinocytes in transducing and modulating nociceptive stimuli has been increasingly appreciated in recent years, the aim of the present study was to evaluate whether peripheral nerve injury affects purinergic signaling in keratinocytes. Spared nerve injury (SNI), a classical model of peripheral neuropathic pain, was induced in mice. The injury was induced by sparing of the tibial nerve, and ligation and cut of the sural and common peroneal nerves. Keratinocytes were isolated and cultured on Days 2-4 post-injury and ATP-mediated calcium responses in keratinocytes were examined by confocal imaging. On average, the number of keratinocytes that responded to ATP with an increase in intracellular calcium gradient as well as the magnitude of the peak response was not significantly different between sham and SNI groups. However, significantly less delay in ATP-induced increase in intracellular calcium concentration was observed in keratinocytes in SNI group compared to sham. Selective pharmacological inhibition of keratinocyte response to ATP indicated a major role of P2 × 4 receptors in the modulation of calcium homeostasis in SNI. Our results indicate that epidermal purinergic signaling undergoes dramatic changes following peripheral nerve injury that may contribute to injury-induced mechanical hypersensitivity.
RARE-21Sox2 plays an important role in choroid plexus tumor development

Neuro-Oncology

2022 Jun 03

Faltings, L;Sarowar, T;Virga, J;Singh, N;Kwa, B;Zhao, H;
| DOI: 10.1093/neuonc/noac079.046

Choroid plexus (CP) tumors are rare primary brain neoplasms found most commonly in children and are thought to arise from CP epithelial cells. Sox2 is a transcription factor that not only plays a role in development in the ventricular zone, CP, and roof plate, but also contributes to cancer stemness, tumorigenesis, and drug resistance. Gene expression studies demonstrate aberrant Sox2 expression in human CP tumors, suggesting a role in tumor development. A subset of CP tumors exhibit abnormal NOTCH pathway activity. Using animal models, we previously show that sustained NOTCH activity leads to CP tumors. Immunofluorescence, RT-qPCR, and RNA scope assays have revealed increased Sox2 levels in NOTCH-driven CP tumors compared to wild type CP in mice. To investigate the role of Sox2 in CP tumors, we eliminated Sox2 expression in NOTCH-driven CP tumors. Loss of Sox2 almost completely blocked NOTCH-driven CP tumor growth in these mice, supporting a role for Sox2 in these tumors. Ciliation regulation is one proposed functional pathway for tumorigenesis in CP tumors. Using immunofluorescence assays for cilia (ARL13b) and aquaporin transport protein 1 (AQP1) in combination with super resolution microscopy, we observe a stark contrast between wild type CP epithelial cells which are multiciliated and homogeneously express AQP1, indicative of normal epithelial differentiation, compared to NOTCH-driven CP tumors consisting of mono-ciliated cells with loss of AQP1 expression. In Sox2-deficient NOTCH-driven CP tumors, we observe tumor cells remain mono-ciliated and AQP1-negative, indicating that Sox2 loss does not affect the ciliation machinery. Together this warrants further study into the mechanisms of Sox2 functions in CP tumors. By unraveling the role of Sox2 in CP tumors, we may better understand their origin and biology to ultimately design improved treatment options.
The histologic and molecular correlates of liver disease in fatal COVID-19 including with alcohol use disorder

Annals of diagnostic pathology

2021 Dec 23

Nuovo, GJ;Suster, D;Awad, H;Michaille, JJ;Tili, E;
PMID: 34968863 | DOI: 10.1016/j.anndiagpath.2021.151881

Hepatic disease is common in severe COVID-19. This study compared the histologic/molecular findings in the liver in fatal COVID-19 (n = 9) and age-matched normal controls (n = 9); three of the fatal COVID-19 livers had pre-existing alcohol use disorder (AUD). Controls showed a high resident population of sinusoidal macrophages that had variable ACE2 expression. Histologic findings in the cases included periportal/lobular inflammation. SARS-CoV2 RNA and nucleocapsid protein were detected in situ in 2/9 COVID-19 livers in low amounts. In 9/9 cases, there was ample in situ SARS-CoV-2 spike protein that co-localized with viral matrix and envelope proteins. The number of cells positive for spike/100× field was significantly greater in the AUD/COVID-19 cases (mean 5.9) versus the non-AUD/COVID-19 cases (mean 0.4, p < 0.001) which was corroborated by Western blots. ACE2+ cells were 10× greater in AUD/COVID-19 livers versus the other COVID-19/control liver samples (p < 0.001). Co-expression experiments showed that the spike protein localized to the ACE2 positive macrophages and, in the AUD cases, hepatic stellate cells that were activated as evidenced by IL6 and TNFα expression. Injection of the S1, but not S2, subunit of spike in mice induced hepatic lobular inflammation in activated macrophages. It is concluded that endocytosed viral spike protein can induce hepatitis in fatal COVID-19. This spike induced hepatitis is more robust in the livers with pre-existing AUD which may relate to why patients with alcohol abuse are at higher risk of severe liver disease with SARS-CoV2 infection.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?