Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (219)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • (-) Remove TBD filter TBD (219)
  • SARS-CoV-2 (42) Apply SARS-CoV-2 filter
  • Lgr5 (12) Apply Lgr5 filter
  • vGlut2 (10) Apply vGlut2 filter
  • Gad1 (9) Apply Gad1 filter
  • FOS (8) Apply FOS filter
  • CD68 (7) Apply CD68 filter
  • SLC32A1 (6) Apply SLC32A1 filter
  • Oxtr (6) Apply Oxtr filter
  • VGAT (6) Apply VGAT filter
  • MALAT1 (5) Apply MALAT1 filter
  • TH (5) Apply TH filter
  • GLI1 (5) Apply GLI1 filter
  • Sst (5) Apply Sst filter
  • Gad2 (5) Apply Gad2 filter
  • Nos1 (5) Apply Nos1 filter
  • HPV (5) Apply HPV filter
  • HIV-1 (5) Apply HIV-1 filter
  • Axin2 (4) Apply Axin2 filter
  • Cnr2 (4) Apply Cnr2 filter
  • Ifng (4) Apply Ifng filter
  • DRD1 (4) Apply DRD1 filter
  • CAMK2D (4) Apply CAMK2D filter
  • Vegfa (4) Apply Vegfa filter
  • SCN5A (4) Apply SCN5A filter
  • Penk (4) Apply Penk filter
  • OLFM4 (4) Apply OLFM4 filter
  • TUBB3 (4) Apply TUBB3 filter
  • Crh (4) Apply Crh filter
  • Cacna1c (4) Apply Cacna1c filter
  • Slc17a6 (4) Apply Slc17a6 filter
  • OPRM1 (4) Apply OPRM1 filter
  • Nts (4) Apply Nts filter
  • RYR2 (4) Apply RYR2 filter
  • VGluT1 (4) Apply VGluT1 filter
  • Il-6 (4) Apply Il-6 filter
  • CB2R (4) Apply CB2R filter
  • HER2 (4) Apply HER2 filter
  • Tgf-β1 (4) Apply Tgf-β1 filter
  • SARS-CoV-2  (4) Apply SARS-CoV-2  filter
  • 18 (4) Apply 18 filter
  • 31 (4) Apply 31 filter
  • Sox9 (3) Apply Sox9 filter
  • IL17A (3) Apply IL17A filter
  • COL1A1 (3) Apply COL1A1 filter
  • CD44 (3) Apply CD44 filter
  • KRT19 (3) Apply KRT19 filter
  • Ccl2 (3) Apply Ccl2 filter
  • FGFR1 (3) Apply FGFR1 filter
  • GFAP (3) Apply GFAP filter

Product

  • (-) Remove RNAscope filter RNAscope (219)

Research area

  • Neuroscience (53) Apply Neuroscience filter
  • Cancer (29) Apply Cancer filter
  • Other: Methods (29) Apply Other: Methods filter
  • Development (18) Apply Development filter
  • Inflammation (13) Apply Inflammation filter
  • Pain (9) Apply Pain filter
  • CGT (5) Apply CGT filter
  • HPV (5) Apply HPV filter
  • Infectious Disease (5) Apply Infectious Disease filter
  • HIV (4) Apply HIV filter
  • LncRNAs (4) Apply LncRNAs filter
  • Other: Metabolism (4) Apply Other: Metabolism filter
  • Stem Cells (4) Apply Stem Cells filter
  • Itch (3) Apply Itch filter
  • Metabolism (3) Apply Metabolism filter
  • Transcriptomics (3) Apply Transcriptomics filter
  • Tumor microenvironment (3) Apply Tumor microenvironment filter
  • Chronic Pain (2) Apply Chronic Pain filter
  • Ear (2) Apply Ear filter
  • Gastroenterology (2) Apply Gastroenterology filter
  • Hearing (2) Apply Hearing filter
  • Heart (2) Apply Heart filter
  • Immunology (2) Apply Immunology filter
  • Immunotherapy (2) Apply Immunotherapy filter
  • Liver (2) Apply Liver filter
  • Obesity (2) Apply Obesity filter
  • Other: Gut health (2) Apply Other: Gut health filter
  • Other: Heart (2) Apply Other: Heart filter
  • Other: Heart Disease (2) Apply Other: Heart Disease filter
  • Other: Kidney (2) Apply Other: Kidney filter
  • Other: Lung (2) Apply Other: Lung filter
  • Other: Pain (2) Apply Other: Pain filter
  • Other: Skin (2) Apply Other: Skin filter
  • Psychiatry (2) Apply Psychiatry filter
  • Reproduction (2) Apply Reproduction filter
  • single-cell and spatial multi-omics (2) Apply single-cell and spatial multi-omics filter
  • Vaccines (2) Apply Vaccines filter
  • Alzheimer's Disease (1) Apply Alzheimer's Disease filter
  • diabetes (1) Apply diabetes filter
  • Endocrinology (1) Apply Endocrinology filter
  • Evolution (1) Apply Evolution filter
  • Kidney (1) Apply Kidney filter
  • Memory (1) Apply Memory filter
  • NGS (1) Apply NGS filter
  • Other (1) Apply Other filter
  • Other: Liver (1) Apply Other: Liver filter
  • Other: Single-cell transcriptomics (1) Apply Other: Single-cell transcriptomics filter
  • Regeneration (1) Apply Regeneration filter
  • Skin (1) Apply Skin filter
  • Stem cell (1) Apply Stem cell filter

Category

  • Publications (219) Apply Publications filter
Splicing Factor SRSF1 Promotes Pancreatitis and KRASG12D-Mediated Pancreatic Cancer

Cancer discovery

2023 Apr 26

Wan, L;Lin, KT;Rahman, MA;Ishigami, Y;Wang, Z;Jensen, MA;Wilkinson, JE;Park, Y;Tuveson, DA;Krainer, AR;
PMID: 37098965 | DOI: 10.1158/2159-8290.CD-22-1013

Inflammation is strongly associated with pancreatic ductal adenocarcinoma (PDAC), a highly lethal malignancy. Dysregulated RNA splicing factors have been widely reported in tumorigenesis, but their involvement in pancreatitis and PDAC is not well understood. Here, we report that the splicing factor SRSF1 is highly expressed in pancreatitis, PDAC precursor lesions, and tumors. Increased SRSF1 is sufficient to induce pancreatitis and accelerate KRASG12D-mediated PDAC. Mechanistically, SRSF1 activates MAPK signaling-partly by upregulating interleukin 1 receptor type 1 (IL1R1) through alternative-splicing-regulated mRNA stability. Additionally, SRSF1 protein is destabilized through a negative feedback mechanism in phenotypically normal epithelial cells expressing KRASG12D in mouse pancreas, and in pancreas organoids acutely expressing KRASG12D, buffering MAPK signaling and maintaining pancreas-cell homeostasis. This negative-feedback regulation of SRSF1 is overcome by hyperactive MYC, facilitating PDAC tumorigenesis. Our findings implicate SRSF1 in the etiology of pancreatitis and PDAC, and point to SRSF1-misregulated alternative splicing as a potential therapeutic target.
Epstein-Barr Virus and the Pathogenesis of Diffuse Large B-Cell Lymphoma

Life (Basel, Switzerland)

2023 Feb 14

Ross, AM;Leahy, CI;Neylon, F;Steigerova, J;Flodr, P;Navratilova, M;Urbankova, H;Vrzalikova, K;Mundo, L;Lazzi, S;Leoncini, L;Pugh, M;Murray, PG;
PMID: 36836878 | DOI: 10.3390/life13020521

Epstein-Barr virus (EBV), defined as a group I carcinogen by the World Health Organization (WHO), is present in the tumour cells of patients with different forms of B-cell lymphoma, including Burkitt lymphoma, Hodgkin lymphoma, post-transplant lymphoproliferative disorders, and, most recently, diffuse large B-cell lymphoma (DLBCL). Understanding how EBV contributes to the development of these different types of B-cell lymphoma has not only provided fundamental insights into the underlying mechanisms of viral oncogenesis, but has also highlighted potential new therapeutic opportunities. In this review, we describe the effects of EBV infection in normal B-cells and we address the germinal centre model of infection and how this can lead to lymphoma in some instances. We then explore the recent reclassification of EBV+ DLBCL as an established entity in the WHO fifth edition and ICC 2022 classifications, emphasising the unique nature of this entity. To that end, we also explore the unique genetic background of this entity and briefly discuss the potential role of the tumour microenvironment in lymphomagenesis and disease progression. Despite the recent progress in elucidating the mechanisms of this malignancy, much work remains to be done to improve patient stratification, treatment strategies, and outcomes.
WT1 regulates expression of DNA-repair gene Neil3 during nephrogenesis

American journal of physiology. Renal physiology

2022 Dec 22

Dickinson, K;Hammond, L;Akpa, M;Chu, LL;Lalonde, CT;Goumba, A;Goodyer, P;
PMID: 36546838 | DOI: 10.1152/ajprenal.00207.2022

Mammalian nephrons arise from a population of nephron progenitor cells (NPCs) expressing the master transcription factor, WT1, which is crucial for NPC proliferation, migration, and differentiation. In humans, biallelic loss of WT1 precludes nephrogenesis and leads to formation of Wilms tumor precursor lesions. We hypothesize that WT1 normally primes the NPC for nephrogenesis by inducing expression of NPC-specific DNA-repair genes that protect the genome. We analyzed transcript levels for a panel of DNA-repair genes in E17.5 vs adult mouse kidneys and noted seven that were increased >20-fold. We then isolated d1(+) NPCs from E17.5 kidneys and found that only one, Neil3, was enriched. RNAscope ISH of E17.5 mouse kidneys showed increased Neil3 expression in the nephrogenic zone vs mature nephron structures. To determine whether Neil3-expression is WT1-dependent, we knocked down Wt1 in d1(+) NPCs (60% knockdown efficiency) and noted a 58% reduction in Neil3 transcript levels. We showed that WT1 directly binds to the Neil3 promoter and that activity of a Neil3 promoter-reporter vector was increased two-fold in WT1(+) vs WT1(-) cells. We propose that Neil3 is a WT1-dependent DNA-repair gene, expressed at high levels in d1(+) NPCs where it repairs mutational injury to the genome during nephrogenesis. NEIL3 is likely just one of many such lineage-specific repair mechanisms that respond to genomic injury during kidney development.
The Immune Cell Profile of the Developing Rat Brain

Brain, behavior, and immunity

2022 Aug 29

Reinl, EL;Blanchard, AC;Graham, EL;Edwards, S;Dionisos, C;McCarthy, MM;
PMID: 36049705 | DOI: 10.1016/j.bbi.2022.08.012

Little is known about the peripheral immune cell (PIC) profile of the developing brain despite growing appreciation for these cells in the mature nervous system. To address this gap, the PIC profile, defined as which cells are present, where they are located, and for how long, was examined in the developing rat using spectral flow cytometry. Select regions of the rat brain (cerebellum, hippocampus, and hypothalamus) were examined at embryonic day 20, and postnatal days 0, 7 and 16. At their peak (E20), PICs were most abundant in the cerebellum, then the hippocampus and hypothalamus. Within the PIC pool, monocytes were most prevalent in all regions and time points, and shifted from being majority classical at E20 to non-classical by PN7. T cells increased over time, and shifted from majority cytotoxic to T-helper cells by PN7. This suggests the PIC profile transitions from reactive to adaptive and surveilling in the second postnatal week. NK cells and mast cells increased temporarily, and mast cells were restricted to the hippocampus and hypothalamus, suggesting they may play a specific role in the development of those regions. Mimicking a viral infection by administration of Poly I:C increased the influx of PICs into the neonatal brain, particularly of NK cells and in the case of males only, non-classical monocytes. This work provides a map for researchers as they study immune cell contributions to healthy and pathological brain development.
Senecavirus A: Frequently asked questions

Journal of Swine Health and Production

2022 May 02

Buckley, A;Lager, K;
| DOI: 10.54846/jshap/1270

Senecavirus A (SVA) has been demonstrated to be a causative agent for vesicular disease in swine. It is clinically indistinguishable from other agents that cause vesicular disease such as foot-and-mouth disease virus (FMDV), which is a reportable foreign animal disease (FAD). Thus, an investigation is initiated to rule out FMDV every time a vesicle is observed. Senecavirus A has now been reported across the Americas and Asia, and it appears the ecology of this virus has changed from sporadic infections to an endemic disease in some areas. In addition to vesicular disease, there have also been reports of increased neonatal mortality on affected sow farms. Knowledge about the pathogenesis of SVA in swine can provide many benefits to the swine industry. Understanding how long the virus can be detected in various sample types after infection can aide in choosing the correct samples to collect for diagnosis. In addition, the duration of virus shedding can help determine measures to control virus spread between animals. Prevention of SVA infection and disease with an efficacious vaccine could improve swine welfare, minimize SVA transmission, and reduce the burden of FAD investigations.
Loss of Selenov predisposes mice to extra fat accumulation and attenuated energy expenditure

Redox biology

2021 Jun 17

Chen, LL;Huang, JQ;Wu, YY;Chen, LB;Li, SP;Zhang, X;Wu, S;Ren, FZ;Lei, XG;
PMID: 34167027 | DOI: 10.1016/j.redox.2021.102048

Selenoprotein V (SELENOV) is a new and the least conserved member of the selenoprotein family. Herein we generated Selenov knockout (KO) mice to determine its in vivo function. The KO led to 16-19% increases (P < 0.05) in body weight that were largely due to 54% higher (P < 0.05) fat mass accumulation, compared with the wild-type (WT) controls. The extra fat accumulation in the KO mice was mediated by up-regulations of genes and proteins involved in lipogenesis (Acc, Fas, Dgat, and Lpl; up by 40%-1.1-fold) and down-regulations of lipolysis (Atgl, Hsl, Ces1d, and Cpt1a; down by 36-89%) in the adipose tissues. The KO also decreased (P < 0.05) VO2 consumption (14-21%), VCO2 production (14-16%), and energy expenditure (14-23%), compared with the WT controls. SELENOV and O-GlcNAc transferase (OGT) exhibited a novel protein-protein interaction that explained the KO-induced decreases (P < 0.05) of OGT protein (15-29%), activity (33%), and function (O-GlcNAcylation, 10-21%) in the adipose tissues. A potential cascade of SELENOV-OGT-AMP-activated protein kinase might serve as a central mechanism to link the biochemical and molecular responses to the KO. Overall, our data revealed a novel in vivo function and mechanism of SELENOV as a new inhibitor of body fat accumulation, activator of energy expenditure, regulator of O-GlcNAcylation, and therapeutic target of such related disorders.
Neuron-Keratinocyte Communication in the Epidermis in Painful Diabetic Neuropathy

The Journal of Pain

2022 May 01

George, D;Jayaraj, N;Belmadani, A;Ren, D;Miller, R;Menichella, D;
| DOI: 10.1016/j.jpain.2022.03.142

Painful diabetic neuropathy (PDN) is one of the most common and intractable complications of diabetes. PDN is characterized by small-fiber degeneration, which can progress to complete loss of cutaneous innervation and is accompanied by neuropathic pain. Uncovering the mechanisms underlying axonal degeneration in PDN remains a major challenge to finding effective and disease-modifying therapies. Sensory nerve afferents normally extend into the epidermis in close juxtaposition to keratinocytes but degenerate in diabetic skin. Our aim is to identify the changes in gene expression profiles and the interactions between dorsal root ganglion (DRG) neurons and keratinocytes to explore the mechanisms by which keratinocytes communicate with cutaneous afferents and how this communication impacts axonal degeneration underlying neuropathic pain in PDN. We used a mouse model of PDN where mice were fed a regular diet (RD, 11% fat) or a high-fat diet (HFD, 42% fat) for 10 weeks during which these mice develop glucose intolerance, mechanical allodynia, small fiber neuropathy. Using a single-cell RNA (scRNA-seq) sequencing approach we captured DRG and keratinocytes gene expression profiles and generated interactome maps. scRNA-seq identified both neuronal and non-neuronal clusters and several differentially expressed genes between RD and HFD from the DRG. We were able to identify several clusters of immune cells and keratinocytes at different stages of differentiation. scRNA-seq results were validated using RNAscope on DRG and skin frozen sections. Moreover, we generated interactome maps between DRG neurons and the peripheral cells to highlight ligand-receptor interactions and we looked to identify genes that were differentially expressed in these interactions. Taken together our data highlights the importance of studying neurons in conjunction with the cells in the tissues with which they interact to identify ligand-receptor interactions that may lead to the identification of neuron signaling in a chronic pain state such as PDN. Grant support from 1R01AR77691-01.
Ethanol-induced suppression of GIRK-dependent signaling in the basal amygdala

Biological psychiatry

2023 Apr 15

Fernandez de Velasco, EM;Tipps, ME;Haider, B;Souders, A;Aguado, C;Rose, TR;Vo, BN;DeBaker, MC;Luján, R;Wickman, K;
PMID: 37068702 | DOI: 10.1016/j.biopsych.2023.04.006

The basolateral amygdala (BLA) regulates mood and associative learning and has been linked to the development and persistence of alcohol use disorder (AUD). The GABAB receptor (GABABR) is a promising therapeutic target for AUD, and previous work suggests that exposure to ethanol and other drugs can alter neuronal GABABR-dependent signaling. The effect of ethanol on GABABR-dependent signaling in the BLA is unknown.GABABR-dependent signaling in the mouse BLA was examined using slice electrophysiology following repeated ethanol exposure. Neuron-specific viral genetic manipulations were then used to understand the relevance of ethanol-induced neuroadaptations in the BA to mood-related behavior.The somatodendritic inhibitory effect of GABABR activation on principal neurons in the basal (BA) but not lateral (LA) sub-region of the BLA was diminished following ethanol exposure. This adaptation was attributable to the suppression of G protein-gated inwardly rectifying K+ (GIRK) channel activity and was mirrored by a re-distribution of GABABR and GIRK channels from the surface membrane to internal sites. While GIRK1 and GIRK2 subunits are critical for GIRK channel formation in BA principal neurons, GIRK3 is necessary for the ethanol-induced neuroadaptation. Viral suppression of GIRK channel activity in BA principal neurons from ethanol-naïve mice recapitulated some mood-related behaviors observed in C57BL/6J mice during ethanol withdrawal.The ethanol-induced suppression of GIRK-dependent signaling in BA principal neurons contributes to some of the mood-related behaviors associated with ethanol withdrawal in mice. Approaches designed to prevent this neuroadaptation and/or strengthen GIRK-dependent signaling may prove useful for treatment of AUD.
Epigenetic priming of immune/inflammatory pathways activation and abnormal activity of cell cycle pathway in a perinatal model of white matter injury

Cell death & disease

2022 Dec 13

Schang, AL;Van Steenwinckel, J;Ioannidou, ZS;Lipecki, J;Rich-Griffin, C;Woolley-Allen, K;Dyer, N;Le Charpentier, T;Schäfer, P;Fleiss, B;Ott, S;Sabéran-Djoneidi, D;Mezger, V;Gressens, P;
PMID: 36513635 | DOI: 10.1038/s41419-022-05483-4

Prenatal inflammatory insults accompany prematurity and provoke diffuse white matter injury (DWMI), which is associated with increased risk of neurodevelopmental pathologies, including autism spectrum disorders. DWMI results from maturation arrest of oligodendrocyte precursor cells (OPCs), a process that is poorly understood. Here, by using a validated mouse model of OPC maturation blockade, we provide the genome-wide ID card of the effects of neuroinflammation on OPCs that reveals the architecture of global cell fate issues underlining their maturation blockade. First, we find that, in OPCs, neuroinflammation takes advantage of a primed epigenomic landscape and induces abnormal overexpression of genes of the immune/inflammatory pathways: these genes strikingly exhibit accessible chromatin conformation in uninflamed OPCs, which correlates with their developmental, stage-dependent expression, along their normal maturation trajectory, as well as their abnormal upregulation upon neuroinflammation. Consistently, we observe the positioning on DNA of key transcription factors of the immune/inflammatory pathways (IRFs, NFkB), in both unstressed and inflamed OPCs. Second, we show that, in addition to the general perturbation of the myelination program, neuroinflammation counteracts the physiological downregulation of the cell cycle pathway in maturing OPCs. Neuroinflammation therefore perturbs cell identity in maturing OPCs, in a global manner. Moreover, based on our unraveling of the activity of genes of the immune/inflammatory pathways in prenatal uninflamed OPCs, the mere suppression of these proinflammatory mediators, as currently proposed in the field, may not be considered as a valid neurotherapeutic strategy.
PhP.B Enhanced Adeno-Associated Virus Mediated-Expression Following Systemic Delivery or Direct Brain Administration

Frontiers in bioengineering and biotechnology

2021 Aug 03

Pietersz, KL;Plessis, FD;Pouw, SM;Liefhebber, JM;van Deventer, SJ;Martens, GJM;Konstantinova, PS;Blits, B;
PMID: 34414171 | DOI: 10.3389/fbioe.2021.679483

Of the adeno-associated viruses (AAVs), AAV9 is known for its capability to cross the blood-brain barrier (BBB) and can, therefore, be used as a noninvasive method to target the central nervous system. Furthermore, the addition of the peptide PhP.B to AAV9 increases its transduction across the BBB by 40-fold. Another neurotropic serotype, AAV5, has been shown as a gene therapeutic delivery vehicle to ameliorate several neurodegenerative diseases in preclinical models, but its administration requires invasive surgery. In this study, AAV9-PhP.B and AAV5-PhP.B were designed and produced in an insect cell-based system. To AAV9, the PhP.B peptide TLAVPFK was added, whereas in AAV5-PhP.B (AQTLAVPFKAQAQ), with AQ-AQAQ sequences used to swap with the corresponding sequence of AAV5. The addition of PhP.B to AAV5 did not affect its capacity to cross the mouse BBB, while increased transduction of liver tissue was observed. Then, intravenous (IV) and intrastriatal (IStr) delivery of AAV9-PhP.B and AAV5 were compared. For AAV9-PhP.B, similar transduction and expression levels were achieved in the striatum and cortex, irrespective of the delivery method used. IStr administration of AAV5 resulted in significantly higher amounts of vector DNA and therapeutic miRNA in the target regions such as striatum and cortex when compared with an IV administration of AAV9-PhP.B. These results illustrate the challenge in developing a vector that can be delivered noninvasively while achieving a transduction level similar to that of direct administration of AAV5. Thus, for therapeutic miRNA delivery with high local expression requirements, intraparenchymal delivery of AAV5 is preferred, whereas a humanized AAV9-PhP.B may be useful when widespread brain (and peripheral) transduction is needed.
Key Residue in the Precursor Region of M Protein Contributes to the Neurovirulence and Neuroinvasiveness of the African Lineage of Zika Virus

Journal of virology

2023 Feb 22

He, MJ;Wang, HJ;Yan, XL;Lou, YN;Song, GY;Li, RT;Zhu, Z;Zhang, RR;Qin, CF;Li, XF;
PMID: 36840584 | DOI: 10.1128/jvi.01801-22

The Zika virus (ZIKV) represents an important global health threat due to its unusual association with congenital Zika syndrome. ZIKV strains are phylogenetically grouped into the African and Asian lineages. However, the viral determinants underlying the phenotypic differences between the lineages remain unknown. Here, multiple sequence alignment revealed a highly conserved residue at position 21 of the premembrane (prM) protein, which is glutamic acid and lysine in the Asian and African lineages, respectively. Using reverse genetics, we generated a recombinant virus carrying an E21K mutation based on the genomic backbone of the Asian lineage strain FSS13025 (termed E21K). The E21K mutation significantly increased viral replication in multiple neural cell lines with a higher ratio of M to prM production. Animal studies showed E21K exhibited increased neurovirulence in suckling mice, leading to more severe defects in mouse brains by causing more neural cell death and destruction of hippocampus integrity. Moreover, the E21K substitution enhanced neuroinvasiveness in interferon alpha/beta (IFN-α/β) receptor knockout mice, as indicated by the increased mortality, and enhanced replication in mouse brains. The global transcriptional analysis showed E21K infection profoundly altered neuron development networks and induced stronger antiviral immune response than wild type (WT) in both neural cells and mouse brains. More importantly, the reverse K21E mutation based on the genomic backbone of the African strain MR766 caused less mouse neurovirulence. Overall, our findings support the 21st residue of prM functions as a determinant for neurovirulence and neuroinvasiveness of the African lineage of ZIKV. IMPORTANCE The suspected link of Zika virus (ZIKV) to birth defects led the World Health Organization to declare ZIKV a Public Health Emergency of International Concern. ZIKV has been identified to have two dominant phylogenetic lineages, African and Asian. Significant differences exist between the two lineages in terms of neurovirulence and neuroinvasiveness in mice. However, the viral determinants underlying the phenotypic differences are still unknown. Here, combining reverse genetics, animal studies, and global transcriptional analysis, we provide evidence that a single E21K mutation of prM confers to the Asian lineage strain FSS130125 significantly enhanced replication in neural cell lines and more neurovirulent and neuroinvasiveness phenotypes in mice. Our findings support that the highly conserved residue at position 21 of prM functions as a determinant of neurovirulence and neuroinvasiveness of the African lineage of ZIKV in mice.
Spatial Transcriptomics Thrives on New Approaches

Inside Precision Medicine

2022 Jun 01

May, M;
| DOI: 10.1089/ipm.09.03.07

Mike May, is a freelance writer and editor with more than 30 years of experience. He earned an MS in biological engineering from the University of Connecticut and a PhD in neurobiology and behavior from Cornell University. He worked as an associate editor at American Scientist, and he is the author of more than 1,000 articles for clients that include GEN, Nature, Science, Scientific American and many others. In addition, he served as the editorial director of many publications, including several Nature Outlooks and Scientific American Worldview.

Pages

  • « first
  • ‹ previous
  • …
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?