Biosensors & bioelectronics
Tian, M;Zhang, R;Li, J;
PMID: 37086563 | DOI: 10.1016/j.bios.2023.115302
In-situ detection provides deep insights into the function of genes and their relationship with diseases by directly visualizing their spatiotemporal behavior. As an emerging in-situ imaging tool, clustered regularly interspaced short palindromic repeats (CRISPR)-mediated bioimaging can localize targets in living and fixed cells. CRISPR-mediated bioimaging has inherent advantages over the gold standard of fluorescent in-situ hybridization (FISH), including fast imaging, cost-effectiveness, and ease of preparation. Existing reviews have provided a detailed classification and overview of the principles of CRISPR-mediated bioimaging. However, the exploitation of potential clinical applicability of this bioimaging technique is still limited. Therefore, analyzing the potential value of CRISPR-mediated in-situ imaging is of great significance to the development of bioimaging. In this review, we initially discuss the available CRISPR-mediated imaging systems from the following aspects: summary of imaging substances, the design and optimization of bioimaging strategies, and factors influencing CRISPR-mediated in-situ detection. Subsequently, we highlight the potential of CRISPR-mediated bioimaging for application in biomedical research and clinical practice. Furthermore, we outline the current bottlenecks and future perspectives of CRISPR-based bioimaging. We believe that this review will facilitate the potential integration of bioimaging-related research with current clinical workflow.
Proceedings of the National Academy of Sciences of the United States of America
He, LN;Chen, S;Yang, Q;Wu, Z;Lao, ZK;Tang, CF;Song, JJ;Liu, XD;Lu, J;Xu, XH;Chen, JJ;Xu, TL;Sun, S;Xu, NJ;
PMID: 36802416 | DOI: 10.1073/pnas.2219952120
Social behavior starts with dynamic approach prior to the final consummation. The flexible processes ensure mutual feedback across social brains to transmit signals. However, how the brain responds to the initial social stimuli precisely to elicit timed behaviors remains elusive. Here, by using real-time calcium recording, we identify the abnormalities of EphB2 mutant with autism-associated Q858X mutation in processing long-range approach and accurate activity of prefrontal cortex (dmPFC). The EphB2-dependent dmPFC activation precedes the behavioral onset and is actively associated with subsequent social action with the partner. Furthermore, we find that partner dmPFC activity is responsive coordinately to the approaching WT mouse rather than Q858X mutant mouse, and the social defects caused by the mutation are rescued by synchro-optogenetic activation in dmPFC of paired social partners. These results thus reveal that EphB2 sustains neuronal activation in the dmPFC that is essential for the proactive modulation of social approach to initial social interaction.
Molecular systems biology
Walton, RT;Singh, A;Blainey, PC;
PMID: 36366905 | DOI: 10.15252/msb.202110768
Spatial structure in biology, spanning molecular, organellular, cellular, tissue, and organismal scales, is encoded through a combination of genetic and epigenetic factors in individual cells. Microscopy remains the most direct approach to exploring the intricate spatial complexity defining biological systems and the structured dynamic responses of these systems to perturbations. Genetic screens with deep single-cell profiling via image features or gene expression programs have the capacity to show how biological systems work in detail by cataloging many cellular phenotypes with one experimental assay. Microscopy-based cellular profiling provides information complementary to next-generation sequencing (NGS) profiling and has only recently become compatible with large-scale genetic screens. Optical screening now offers the scale needed for systematic characterization and is poised for further scale-up. We discuss how these methodologies, together with emerging technologies for genetic perturbation and microscopy-based multiplexed molecular phenotyping, are powering new approaches to reveal genotype-phenotype relationships.
Journal of visualized experiments : JoVE
Kerloch, T;Lepko, T;Shkura, K;Guillemot, F;Gillotin, S;
PMID: 36342175 | DOI: 10.3791/64369
Adult Hippocampal Neurogenesis (AHN), which consists of a lifelong maintenance of proliferative and quiescent neural stem cells (NSCs) within the sub-granular zone (SGZ) of the dentate gyrus (DG) and their differentiation from newly born neurons into granule cells in the granule cell layer, is well validated across numerous studies. Using genetically modified animals, particularly rodents, is a valuable tool to investigate signaling pathways regulating AHN and to study the role of each cell type that compose the hippocampal neurogenic niche. To address the latter, methods combining single nuclei isolation with next generation sequencing have had a significant impact in the field of AHN to identify gene signatures for each cell population. Further refinement of these techniques is however needed to phenotypically profile rarer cell populations within the DG. Here, we present a method that utilizes Fluorescence Activated Nuclei Sorting (FANS) to exclude most neuronal populations from a single nuclei suspension isolated from freshly dissected DG, by selecting unstained nuclei for the NeuN antigen, in order to perform single nuclei RNA sequencing (snRNA-seq). This method is a potential steppingstone to further investigate intercellular regulation of the AHN and to uncover novel cellular markers and mechanisms across species.
Arsenijevic, Y;Berger, A;Udry, F;Kostic, C;
PMID: 36015231 | DOI: 10.3390/pharmaceutics14081605
This review offers the basics of lentiviral vector technologies, their advantages and pitfalls, and an overview of their use in the field of ophthalmology. First, the description of the global challenges encountered to develop safe and efficient lentiviral recombinant vectors for clinical application is provided. The risks and the measures taken to minimize secondary effects as well as new strategies using these vectors are also discussed. This review then focuses on lentiviral vectors specifically designed for ocular therapy and goes over preclinical and clinical studies describing their safety and efficacy. A therapeutic approach using lentiviral vector-mediated gene therapy is currently being developed for many ocular diseases, e.g., aged-related macular degeneration, retinopathy of prematurity, inherited retinal dystrophies (Leber congenital amaurosis type 2, Stargardt disease, Usher syndrome), glaucoma, and corneal fibrosis or engraftment rejection. In summary, this review shows how lentiviral vectors offer an interesting alternative for gene therapy in all ocular compartments.
Makhlouf, M;D'Hulst, C;Omura, M;Rosa, A;Mina, R;Bernal-Garcia, S;Lempert, E;Saraiva, L;Feinstein, P;
| DOI: 10.2139/ssrn.4119003
In the mouse, more than 1,100 odorant receptors (ORs) are expressed in a monogenic and monoallelic fashion, referred to as singular gene expression. Using a 21bp singular-choice enhancer (x21), we radically increase representation of olfactory sensory neurons (OSNs) choosing a 5x21 enhanced OR transgene, but not overexpression of its mRNA on a per cell basis. RNA-sequencing and differential expression analysis identified 425 differentially expressed genes (DEGs). ORs make up 86% of all DEGs, of which 325 have decreased representation and 40 have increased representation. Underrepresented ORs include Class I, Class II and TAAR genes and within each of their respective olfactory bulb domains: DI, DII, and DIII (TAAR) we committedly observe multiple homogeneous glomeruli with an OR1A1-identity. The underrepresentation of endogenous, class-specific ORs across evolutionarily distinct cell types in favor of the expression of the 5x21-OR1A1 transgene argues that a common mechanism of singular gene choice is present for all OR-expressing OSNs.
Zhonghua kou qiang yi xue za zhi = Zhonghua kouqiang yixue zazhi = Chinese journal of stomatology
Wen, Q;Ren, HH;Zhao, YM;Yan, WJ;Ge, LH;Chen, XX;
PMID: 37082848 | DOI: 10.3760/cma.j.cn112144-20220901-00471
Objective: Single-cell RNA sequencing (scRNA-seq) was used to analyze the developing mouse molars, in order to construct a spatiotemporal development atlas of pulp cells, and further to reveal the developmental process and regulatory mechanism of tooth development. Methods: Ten mandibular first molars from C57BL/6 mice in postnatal day (PN) 0 and 3 were respectively dissected and digested to obtain single-cell suspensions. scRNA-seq was performed on 10× Genomics platform. PN 7 mouse molar scRNA-seq data were obtained from our previous study. PN 0, 3, and 7 scRNA-seq data were integrated for following analysis. The initial quality control, mapping and single cell expression matrix construction were performed by Cell Ranger. Quality control, standardization, dimensional reduction and cluster analysis were performed by using Seurat. Monocle was used to generate the pseudotime trajectory. Scillus was used to perform gene ontology analysis. In order to detect the spatiotemporal change of different population of pulp cells, the marker genes of each cluster were demonstrated by RNAscope in situ hybridization. Results: There were twenty-six cell clusters within mouse molars, which were identified as eight different cell types, including dental pulp cells, dental follicle cells, epithelial cells, immune cells, endothelial cells, perivascular cells, glial cells and erythrocytes. We further re-clustered and analyzed dental pulp cells. Cluster 0 were mature pulp cells, which located at the upper portion of crown. The main functions of cluster 0 were osteogenesis and extracellular structure organization. Cluster 1 were apical papilla cells, which located at the apical part of roots, whose main functions were extracellular structure organization and organ development. Cluster 2 were cycling cells, which were actively proliferated, resided in the lower portion of the crown. Cluster 3 and 4 were preodontoblasts and odontoblasts, respectively. Their functions were closely related to biomineralization. The proportion of mature pulp cells increased with the development process, while the proportion of cycling cells and odontoblast lineage decreased. According to the expression pattern of marker genes of each cluster, we constructed a cell atlas of dental pulp. Pseudotime trajectory analysis found there were two development trajectories within dental pulp. They both started from SPARC related modular calcium binding 2 (Smoc2)+ dental papilla cells, then went through DNA topoisomerase Ⅱ alpha (Top2a)+ cycling cells, and finally divided into coxsackie virus and adenovirus receptor (Cxadr)+ mature pulp cells or dentin sialophosphoprotein (Dspp)+ odontoblasts two lineages. Conclusions: scRNA-seq could fully discover the intercellular heterogeneity of cells on transcriptome level, which provides a powerful tool to study the process and regulatory mechanism of organ development.
Hepatology communications
Morrison, JK;DeRossi, C;Alter, IL;Nayar, S;Giri, M;Zhang, C;Cho, JH;Chu, J;
PMID: 35315595 | DOI: 10.1002/hep4.1930
The mechanisms underlying liver fibrosis are multifaceted and remain elusive with no approved antifibrotic treatments available. The adult zebrafish has been an underutilized tool to study liver fibrosis. We aimed to characterize the single-cell transcriptome of the adult zebrafish liver to determine its utility as a model for studying liver fibrosis. We used single-cell RNA sequencing (scRNA-seq) of adult zebrafish liver to study the molecular and cellular dynamics at a single-cell level. We performed a comparative analysis to scRNA-seq of human liver with a focus on hepatic stellate cells (HSCs), the driver cells in liver fibrosis. scRNA-seq reveals transcriptionally unique populations of hepatic cell types that comprise the zebrafish liver. Joint clustering with human liver scRNA-seq data demonstrates high conservation of transcriptional profiles and human marker genes in zebrafish. Human and zebrafish HSCs show conservation of transcriptional profiles, and we uncover collectin subfamily member 11 (colec11) as a novel, conserved marker for zebrafish HSCs. To demonstrate the power of scRNA-seq to study liver fibrosis using zebrafish, we performed scRNA-seq on our zebrafish model of a pediatric liver disease with mutation in mannose phosphate isomerase (MPI) and characteristic early liver fibrosis. We found fibrosis signaling pathways and upstream regulators conserved across MPI-depleted zebrafish and human HSCs. CellPhoneDB analysis of zebrafish transcriptome identified neuropilin 1 as a potential driver of liver fibrosis. Conclusion: This study establishes the first scRNA-seq atlas of the adult zebrafish liver, highlights the high degree of similarity to human liver, and strengthens its value as a model to study liver fibrosis.
Marshall, E;Crowley, J;McCormack, S;Rood, B;Hankinson, T;Cheng, S;DeCuypere, M;Lam, S;Goldman, S;Ballester, L;Faig, W;Velasco, R;Arya, K;Storm, P;Resnick, A;Prados, M;Mueller, S;Malbari, F;Kline, C;
| DOI: 10.1093/neuonc/noac079.042
BACKGROUND: Pediatric craniopharyngioma is associated with long-term survival, but tumor- and therapy-related complications often negatively impact quality of life (QoL). Standard treatments include resection and radiation, but institutional practices vary and recurrence rates remain high. In this review, we utilized a cohort from the Children’s Brain Tumor Network (CBTN) to evaluate outcomes for craniopharyngioma. METHODS: CBTN provides clinical and genomic data for pediatric patients diagnosed with primary central nervous system tumors across 25+ institutions. We collected data for 124 patients, ages 0-21, diagnosed with craniopharyngioma between 2012-2020. Variables collected included treatment, recurrence/progression, and comorbidities. RESULTS: Excluding patients without confirmed pathologic diagnosis (n=10) or follow-up data (n=39), 75 patients remained. For initial treatment, most (n=46, 61%) received surgery alone (9 partial, 33 near-total resection). Twenty-six (35%) underwent both surgery and radiation, with 9 receiving both therapies upfront and 17 receiving radiation at progression/recurrence. Four (5%) patients received chemotherapy. Over half of the cohort (n=39, 52%) had at least one progression/recurrence, and four died (5%). Significantly higher rates of progression/recurrence (84% vs. 32%, p=4.0e-5) were identified in patients that had surgery and radiation, compared to surgery alone. Time to recurrence, progression, or death was shorter for the surgery and radiation group (HR=4.1, p<1.0e-4), and for those that underwent partial versus near-total resection (HR=2.7, p=0.1.2e-2). Comorbidities were likely underreported, based on low rates of visual (32%), neuroendocrine (27%), and neurologic (28%) deficits at diagnosis, and 29 patients (39%) with unspecified medical history. CONCLUSIONS: CBTN provides a robust repository of information on treatment and survival of craniopharyngioma patients. However, we found a paucity of data on associated comorbidities and QoL outcomes. We advocate that future datasets and clinical trials routinely collect functional outcomes alongside therapy and survival data, particularly in craniopharyngioma where long-term survival is balanced with future QoL.
Yang, TS;LaDouceur, EE;Baumgartner, WA;Marr, HS;Karounos, M;Robertson, J;Whitehurst, N;Miller, LS;Birkenheuer, AJ;
Ticks are important ectoparasites that are capable of transmitting multiple classes of pathogens and are currently linked with many emerging tick-borne diseases worldwide. With increasing occurrences of tick-borne diseases in both humans and veterinary species, there is a continuous need to further our understanding of ticks and the pathogens they transmit. Whole tick histology provides a full scope of the tick internal anatomy, allowing researchers to examine multiple organs of interest in a single section. This is in contrast to other techniques that are more commonly utilized in tick-borne disease research, such as electron microscopy and light microscopy of individual organs. There is a lack of literature describing a practical technique to process whole tick histologic sections. Therefore, the current study aims to provide researchers with a workable protocol to prepare high quality paraffin-embedded whole tick histology sections. Amblyomma americanum adults were used as an example species for this study. After a series of pilot experiments using a combination of various fixatives, softening agents and processing techniques, we elected to compare two common fixatives, 10% neutral-buffered formalin (NBF) and Bouin’s solution for whole ticks. Equal numbers of A. americanum adults (n = 10/fixative) were processed identically and their whole tick histology sections were individually scored. Higher scores were assigned to whole tick sections that contained more internal organs that are crucial for tick-borne disease research (e.g. salivary glands and midgut), high integrity of tissues and exoskeleton on the section, and good fixation and staining quality of the tissues. The mean total scores for Bouin’s-fixed ticks were significantly higher compared to NBF-fixed ticks (p = 0.001). To further assess our preferred technique, we also demonstrated the feasibility of producing high quality whole tick sections for three other common tick species of medical importance (Rhipicephalus sanguineus, Ixodes scapularis, and Dermacentor variabilis) using Bouin’s solution. While this technique may require further optimization for other tick species, we described a feasible protocol that uses commonly available tools, reagents and standard histologic equipment. This should allow any investigator to easily make adjustments to this protocol as needed based on their experimental goals.
Qi, Y;Lee, NJ;Ip, CK;Enriquez, R;Tasan, R;Zhang, L;Herzog, H;
PMID: 37201523 | DOI: 10.1016/j.cmet.2023.04.020
Neuropeptide Y (NPY) in the arcuate nucleus (ARC) is known as one of the most critical regulators of feeding. However, how NPY promotes feeding under obese conditions is unclear. Here, we show that positive energy balance, induced by high-fat diet (HFD) or in genetically obese leptin-receptor-deficient mice, leads to elevated Npy2r expression especially on proopiomelanocortin (POMC) neurons, which also alters leptin responsiveness. Circuit mapping identified a subset of ARC agouti-related peptide (Agrp)-negative NPY neurons that control these Npy2r expressing POMC neurons. Chemogenetic activation of this newly discovered circuitry strongly drives feeding, while optogenetic inhibition reduces feeding. Consistent with that, lack of Npy2r on POMC neurons leads to reduced food intake and fat mass. This suggests that under energy surplus conditions, when ARC NPY levels generally drop, high-affinity NPY2R on POMC neurons is still able to drive food intake and enhance obesity development via NPY released predominantly from Agrp-negative NPY neurons.
Chen, J;Katada, Y;Okimura, K;Yamaguchi, T;Guh, YJ;Nakayama, T;Maruyama, M;Furukawa, Y;Nakane, Y;Yamamoto, N;Sato, Y;Ando, H;Sugimura, A;Tabata, K;Sato, A;Yoshimura, T;
PMID: 36306789 | DOI: 10.1016/j.cub.2022.09.062
Many organisms living along the coastlines synchronize their reproduction with the lunar cycle. At the time of spring tide, thousands of grass puffers (Takifugu alboplumbeus) aggregate and vigorously tremble their bodies at the water's edge to spawn. To understand the mechanisms underlying this spectacular semilunar beach spawning, we collected the hypothalamus and pituitary from male grass puffers every week for 2 months. RNA sequencing (RNA-seq) analysis identified 125 semilunar genes, including genes crucial for reproduction (e.g., gonadotropin-releasing hormone 1 [gnrh1], luteinizing hormone β subunit [lhb]) and receptors for pheromone prostaglandin E (PGE). PGE2 is secreted into the seawater during the spawning, and its administration activates olfactory sensory neurons and triggers trembling behavior of surrounding individuals. These results suggest that PGE2 synchronizes lunar-regulated beach-spawning behavior in grass puffers. To further explore the mechanism that regulates the lunar-synchronized transcription of semilunar genes, we searched for semilunar transcription factors. Spatial transcriptomics and multiplex fluorescent in situ hybridization showed co-localization of the semilunar transcription factor CCAAT/enhancer-binding protein δ (cebpd) and gnrh1, and cebpd induced the promoter activity of gnrh1. Taken together, our study demonstrates semilunar genes that mediate lunar-synchronized beach-spawning behavior. VIDEO ABSTRACT.