Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (7)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (219) Apply TBD filter
  • SARS-CoV-2 (42) Apply SARS-CoV-2 filter
  • Lgr5 (12) Apply Lgr5 filter
  • vGlut2 (10) Apply vGlut2 filter
  • Gad1 (9) Apply Gad1 filter
  • FOS (8) Apply FOS filter
  • CD68 (7) Apply CD68 filter
  • SLC32A1 (6) Apply SLC32A1 filter
  • Oxtr (6) Apply Oxtr filter
  • VGAT (6) Apply VGAT filter
  • MALAT1 (5) Apply MALAT1 filter
  • TH (5) Apply TH filter
  • GLI1 (5) Apply GLI1 filter
  • Sst (5) Apply Sst filter
  • Gad2 (5) Apply Gad2 filter
  • Nos1 (5) Apply Nos1 filter
  • HPV (5) Apply HPV filter
  • HIV-1 (5) Apply HIV-1 filter
  • Axin2 (4) Apply Axin2 filter
  • Cnr2 (4) Apply Cnr2 filter
  • Ifng (4) Apply Ifng filter
  • DRD1 (4) Apply DRD1 filter
  • CAMK2D (4) Apply CAMK2D filter
  • Vegfa (4) Apply Vegfa filter
  • SCN5A (4) Apply SCN5A filter
  • Penk (4) Apply Penk filter
  • OLFM4 (4) Apply OLFM4 filter
  • TUBB3 (4) Apply TUBB3 filter
  • Crh (4) Apply Crh filter
  • Cacna1c (4) Apply Cacna1c filter
  • (-) Remove Slc17a6 filter Slc17a6 (4)
  • OPRM1 (4) Apply OPRM1 filter
  • Nts (4) Apply Nts filter
  • RYR2 (4) Apply RYR2 filter
  • VGluT1 (4) Apply VGluT1 filter
  • Il-6 (4) Apply Il-6 filter
  • CB2R (4) Apply CB2R filter
  • HER2 (4) Apply HER2 filter
  • Tgf-β1 (4) Apply Tgf-β1 filter
  • SARS-CoV-2  (4) Apply SARS-CoV-2  filter
  • 18 (4) Apply 18 filter
  • 31 (4) Apply 31 filter
  • Sox9 (3) Apply Sox9 filter
  • IL17A (3) Apply IL17A filter
  • COL1A1 (3) Apply COL1A1 filter
  • CD44 (3) Apply CD44 filter
  • (-) Remove KRT19 filter KRT19 (3)
  • Ccl2 (3) Apply Ccl2 filter
  • FGFR1 (3) Apply FGFR1 filter
  • GFAP (3) Apply GFAP filter

Product

  • (-) Remove RNAscope filter RNAscope (7)

Research area

  • Neuroscience (4) Apply Neuroscience filter
  • Injury (1) Apply Injury filter
  • Liver (1) Apply Liver filter
  • Liver Injury (1) Apply Liver Injury filter
  • Other: Liver (1) Apply Other: Liver filter
  • Progenitor Cells (1) Apply Progenitor Cells filter
  • Regeneration (1) Apply Regeneration filter
  • Stem cell (1) Apply Stem cell filter
  • Valence processing (1) Apply Valence processing filter

Category

  • Publications (7) Apply Publications filter
TWEAK/FN14 promotes profibrogenic pathway activation in Prominin-1-expressing hepatic progenitor cells in biliary atresia

Hepatology

2023 Jan 01

Short, C;Zhong, A;Xu, J;Mahdi, E;Glazier, A;Malkoff, N;
| DOI: 10.1097/HEP.0000000000000026

The experimental mouse model of BA mediated by perinatal rhesus rotavirus (RRV) infection resulted in increased co-expression of _Fn14_ in _Prom1_-expressing HPCs within regions of ductular reactions. FN14 antagonist L524-0366 decreased ductular reactions, biliary fibrosis and periportal fibroblast activation in RRV injury. L524-0366 inhibition also demonstrated loss of downstream non-canonical NF-kB signaling expression in RRV injury. Murine HPC organoids demonstrated accelerated organoid growth and proliferation when treated with recombinant TWEAK. Increased organoid proliferation with recombinant TWEAK was lost when also treated with L524-0366. Analysis of a large publicly available RNA-seq database of BA and normal control patients revealed significant increases in expression of _PROM1_, _FN14_, and genes downstream of TNF signaling and non-canonical NF-kB signaling pathways in BA infants. Infants who failed to achieve bile drainage after hepatoportoenterostomy had higher relative levels of _FN14_ expression.
Prominin-1 promotes restitution of the murine extrahepatic biliary luminal epithelium following cholestatic liver injury

Hepatology communications

2023 Jan 20

Zhong, A;Short, C;Xu, J;Fernandez, GE;Malkoff, N;Noriega, N;Yeo, T;Wang, L;Mavila, N;Asahina, K;Wang, KS;
PMID: 36662671 | DOI: 10.1097/HC9.0000000000000018

Restitution of the extrahepatic biliary luminal epithelium in cholangiopathies is poorly understood. Prominin-1 (Prom1) is a key component of epithelial ciliary body of stem/progenitor cells. Given that intrahepatic Prom1-expressing progenitor cells undergo cholangiocyte differentiation, we hypothesized that Prom1 may promote restitution of the extrahepatic bile duct (EHBD) epithelium following injury.Utilizing various murine biliary injury models, we identified Prom1-expressing cells in the peribiliary glands of the EHBD. These Prom1-expressing cells are progenitor cells which give rise to cholangiocytes as part of the normal maintenance of the EHBD epithelium. Following injury, these cells proliferate significantly more rapidly to re-populate the biliary luminal epithelium. Null mutation of Prom1 leads to significantly >10-fold dilated peribiliary glands following rhesus rotavirus-mediated biliary injury. Cultured organoids derived from Prom1 knockout mice are comprised of biliary progenitor cells with altered apical-basal cellular polarity, significantly fewer and shorter cilia, and decreased organoid proliferation dynamics consistent with impaired cell motility.We, therefore, conclude that Prom1 is involved in biliary epithelial restitution following biliary injury in part through its role in supporting cell polarity.
Introduction of synaptotagmin 7 promotes facilitation at the climbing fiber to Purkinje cell synapse

Cell reports

2021 Sep 21

Weyrer, C;Turecek, J;Harrison, B;Regehr, WG;
PMID: 34551307 | DOI: 10.1016/j.celrep.2021.109719

Synaptotagmin 7 (Syt7) is a high-affinity calcium sensor that is implicated in multiple aspects of synaptic transmission. Here, we study the influence of Syt7 on the climbing fiber (CF) to Purkinje cell (PC) synapse. We find that small facilitation and prominent calcium-dependent recovery from depression at this synapse do not rely on Syt7 and that Syt7 is not normally present in CFs. We expressed Syt7 in CFs to assess the consequences of introducing Syt7 to a synapse that normally lacks Syt7. Syt7 expression does not promote asynchronous release or accelerate recovery from depression. Syt7 decreases the excitatory postsynaptic current (EPSC) magnitude, consistent with a decrease in the initial probability of release (PR). Syt7 also increases synaptic facilitation to such a large extent that it could not arise solely as an indirect consequence of decreased PR. Thus, the primary consequence of Syt7 expression in CFs, which normally lack Syt7, is to promote synaptic facilitation.
Distribution and Activation of Melanin-Concentrating Hormone Receptor-1 at Dopaminergic, GABAergic, and Glutamatergic Neurons in the Ventral Tegmental Area

Carleton University

2022 Dec 16

Spencer, C;
| DOI: 10.22215/etd/2022-15217

Melanin-concentrating hormone (MCH) is an orexigenic neuropeptide that acts through its receptor (MCHR1) to promote positive energy balance by increasing food intake and decreasing energy expenditure. MCH has been shown to inhibit dopamine release from the mesocorticolimbic dopamine pathway originating in the ventral tegmental area (VTA), and a hyperdopaminergic state underlies hyperactivity observed in animals lacking MCH or MCHR1. However, it is not known if the inhibitory effect of MCH on dopaminergic tone could be due to direct regulation of dopaminergic VTA neurons. We used a combination of molecular, neuroanatomical, and electrophysiological techniques to assess MCHR1 expression and activation in the VTA. MCH neurons project to the VTA, which comprises nerve terminals that contain MCH and may represent MCH release sites. Consistent with this, we detected MCHR1 expression on major VTA cell types, including those that are dopaminergic, GABAergic, and glutamatergic. Functional MCHR1 activation may regulate dopamine release via two mechanisms, one by acutely and directly inhibiting dopaminergic VTA neurons, and the other by disinhibiting glutamatergic afferents to dopaminergic VTA neurons. While we have not measured dopamine release in this present thesis, we postulate that MCH may acutely suppress dopamine release, while concurrently engaging local glutamatergic signaling to restore dopamine levels. These results signify that the VTA is a novel target for MCH-mediated physiology, including for the maintenance of energy homeostasis
Daily changes in light influence mood via inhibitory networks within the thalamic perihabenular nucleus

Science advances

2022 Jun 10

Weil, T;Daly, KM;Yarur Castillo, H;Thomsen, MB;Wang, H;Mercau, ME;Hattar, S;Tejeda, H;Fernandez, DC;
PMID: 35687680 | DOI: 10.1126/sciadv.abn3567

Exposure to irregular lighting schedules leads to deficits in affective behaviors. The retino-recipient perihabenular nucleus (PHb) of the dorsal thalamus has been shown to mediate these effects in mice. However, the mechanisms of how light information is processed within the PHb remains unknown. Here, we show that the PHb contains a distinct cluster of GABAergic neurons that receive direct retinal input. These neurons are part of a larger inhibitory network composed of the thalamic reticular nucleus and zona incerta, known to modulate thalamocortical communication. In addition, PHbGABA neurons locally modulate excitatory-relay neurons, which project to limbic centers. Chronic exposure to irregular light-dark cycles alters photo-responsiveness and synaptic output of PHbGABA neurons, disrupting daily oscillations of genes associated with inhibitory and excitatory PHb signaling. Consequently, selective and chronic PHbGABA manipulation results in mood alterations that mimic those caused by irregular light exposure. Together, light-mediated disruption of PHb inhibitory networks underlies mood deficits.
Identification of a rare Gli1+ progenitor cell population contributing to liver regeneration during chronic injury

Cell discovery

2022 Nov 01

Peng, J;Li, F;Wang, J;Wang, C;Jiang, Y;Liu, B;He, J;Yuan, K;Pan, C;Lin, M;Zhou, B;Chen, L;Gao, D;Zhao, Y;
PMID: 36316325 | DOI: 10.1038/s41421-022-00474-3

In adults, hepatocytes are mainly replenished from the existing progenitor pools of hepatocytes and cholangiocytes during chronic liver injury. However, it is unclear whether other cell types in addition to classical hepatocytes and cholangiocytes contribute to hepatocyte regeneration after chronic liver injuries. Here, we identified a new biphenotypic cell population that contributes to hepatocyte regeneration during chronic liver injuries. We found that a cell population expressed Gli1 and EpCAM (EpCAM+Gli1+), which was further characterized with both epithelial and mesenchymal identities by single-cell RNA sequencing. Genetic lineage tracing using dual recombinases revealed that Gli1+ nonhepatocyte cell population could generate hepatocytes after chronic liver injury. EpCAM+Gli1+ cells exhibited a greater capacity for organoid formation with functional hepatocytes in vitro and liver regeneration upon transplantation in vivo. Collectively, these findings demonstrate that EpCAM+Gli1+ cells can serve as a new source of liver progenitor cells and contribute to liver repair and regeneration.
Glutamatergic and GABAergic neurons in pontine central gray mediate opposing valence-specific behaviors through a global network

Neuron

2023 Feb 28

Xiao, C;Wei, J;Zhang, GW;Tao, C;Huang, JJ;Shen, L;Wickersham, IR;Tao, HW;Zhang, LI;
PMID: 36893756 | DOI: 10.1016/j.neuron.2023.02.012

Extracting the valence of environmental cues is critical for animals' survival. How valence in sensory signals is encoded and transformed to produce distinct behavioral responses remains not well understood. Here, we report that the mouse pontine central gray (PCG) contributes to encoding both negative and positive valences. PCG glutamatergic neurons were activated selectively by aversive, but not reward, stimuli, whereas its GABAergic neurons were preferentially activated by reward signals. The optogenetic activation of these two populations resulted in avoidance and preference behavior, respectively, and was sufficient to induce conditioned place aversion/preference. Suppression of them reduced sensory-induced aversive and appetitive behaviors, respectively. These two functionally opponent populations, receiving a broad range of inputs from overlapping yet distinct sources, broadcast valence-specific information to a distributed brain network with distinguishable downstream effectors. Thus, PCG serves as a critical hub to process positive and negative valences of incoming sensory signals and drive valence-specific behaviors with distinct circuits.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?