Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (7)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (219) Apply TBD filter
  • SARS-CoV-2 (42) Apply SARS-CoV-2 filter
  • Lgr5 (12) Apply Lgr5 filter
  • vGlut2 (10) Apply vGlut2 filter
  • Gad1 (9) Apply Gad1 filter
  • FOS (8) Apply FOS filter
  • CD68 (7) Apply CD68 filter
  • SLC32A1 (6) Apply SLC32A1 filter
  • Oxtr (6) Apply Oxtr filter
  • VGAT (6) Apply VGAT filter
  • MALAT1 (5) Apply MALAT1 filter
  • TH (5) Apply TH filter
  • GLI1 (5) Apply GLI1 filter
  • Sst (5) Apply Sst filter
  • Gad2 (5) Apply Gad2 filter
  • Nos1 (5) Apply Nos1 filter
  • HPV (5) Apply HPV filter
  • HIV-1 (5) Apply HIV-1 filter
  • Axin2 (4) Apply Axin2 filter
  • Cnr2 (4) Apply Cnr2 filter
  • Ifng (4) Apply Ifng filter
  • DRD1 (4) Apply DRD1 filter
  • CAMK2D (4) Apply CAMK2D filter
  • Vegfa (4) Apply Vegfa filter
  • SCN5A (4) Apply SCN5A filter
  • Penk (4) Apply Penk filter
  • OLFM4 (4) Apply OLFM4 filter
  • TUBB3 (4) Apply TUBB3 filter
  • Crh (4) Apply Crh filter
  • Cacna1c (4) Apply Cacna1c filter
  • Slc17a6 (4) Apply Slc17a6 filter
  • OPRM1 (4) Apply OPRM1 filter
  • Nts (4) Apply Nts filter
  • RYR2 (4) Apply RYR2 filter
  • VGluT1 (4) Apply VGluT1 filter
  • Il-6 (4) Apply Il-6 filter
  • CB2R (4) Apply CB2R filter
  • HER2 (4) Apply HER2 filter
  • Tgf-β1 (4) Apply Tgf-β1 filter
  • (-) Remove SARS-CoV-2  filter SARS-CoV-2  (4)
  • 18 (4) Apply 18 filter
  • 31 (4) Apply 31 filter
  • (-) Remove Sox9 filter Sox9 (3)
  • IL17A (3) Apply IL17A filter
  • COL1A1 (3) Apply COL1A1 filter
  • CD44 (3) Apply CD44 filter
  • KRT19 (3) Apply KRT19 filter
  • Ccl2 (3) Apply Ccl2 filter
  • FGFR1 (3) Apply FGFR1 filter
  • GFAP (3) Apply GFAP filter

Product

  • (-) Remove RNAscope filter RNAscope (7)

Research area

  • Covid (4) Apply Covid filter
  • Stem Cells (2) Apply Stem Cells filter
  • Heart (1) Apply Heart filter
  • Immunology (1) Apply Immunology filter
  • Injury (1) Apply Injury filter
  • Liver (1) Apply Liver filter
  • Lung fibrosis (1) Apply Lung fibrosis filter
  • Neuroinflammation (1) Apply Neuroinflammation filter
  • Progenitor Cells (1) Apply Progenitor Cells filter
  • Regeneration (1) Apply Regeneration filter
  • Vaccines (1) Apply Vaccines filter

Category

  • Publications (7) Apply Publications filter
The mast cell exosome-fibroblast connection: A novel pro-fibrotic pathway

Frontiers in medicine

2023 Feb 23

Savage, A;Risquez, C;Gomi, K;Schreiner, R;Borczuk, AC;Worgall, S;Silver, RB;
PMID: 36910476 | DOI: 10.3389/fmed.2023.1139397

In addition to the traditional activation of resident receptors by release of local mediators, new evidence favors the existence of exosomes in cell-to-cell communication that mediates delivery of specific cargo to modulate recipient cell function. We report that mast cell exosomes are an additional source of pro-fibrotic substances and constitute a unique pathway for the generation of excess collagen.We use primary human lung fibroblasts (HLFs) to demonstrate the uptake of labeled exosomes isolated from the human mast cell line HMC-1 (MC-EXOs), previously shown to contain protein cargo in common with human mast cell exosomes.The MC-EXO uptake by HLF is to the cytosol and increases both proline hydroxylation in HLF lysate and secreted collagen, within 24 h, which is sustained over 72 h, the same time required for transforming growth factor-β (TGF-β) to activate collagen synthesis in the HLFs. Unlike TGF-β, MC-EXO uptake does not induce fibrillar gene activation or invoke the Smad-nuclear transcription pathway. We show that MC-EXO uptake and TGF-β have an additive effect on collagen synthesis in HLF and postulate that MC-EXO uptake by HLFs is a contributing factor to excess collagen synthesis and represents a unique paradigm for understanding fibrosis.It is known that, in the lungs, mast cells are more activated and increase in number with inflammation, injury and viral infection associated with fibrosis. With the reported increased incidence of post-COVID-pulmonary fibrosis (PCPF), data from patients with severe COVID-19 are presented that show an increase in the mast cell number in lung parenchyma, the site of PCPF. Our findings provide a rationale for targeting multiple fibrogenic pathways in the management of lung fibrosis and the use of mast cell exosomes as a biomarker for the prognostic and diagnostic management of evolving fibrotic lung disease.
A LGR5 reporter pig model closely resembles human intestine for improved study of stem cells in disease

FASEB journal : official publication of the Federation of American Societies for Experimental Biology

2023 Jun 01

Schaaf, CR;Polkoff, KM;Carter, A;Stewart, AS;Sheahan, B;Freund, J;Ginzel, J;Snyder, JC;Roper, J;Piedrahita, JA;Gonzalez, LM;
PMID: 37159340 | DOI: 10.1096/fj.202300223R

Intestinal epithelial stem cells (ISCs) are responsible for intestinal epithelial barrier renewal; thereby, ISCs play a critical role in intestinal pathophysiology research. While transgenic ISC reporter mice are available, advanced translational studies lack a large animal model. This study validates ISC isolation in a new porcine Leucine Rich Repeat Containing G Protein-Coupled Receptor 5 (LGR5) reporter line and demonstrates the use of these pigs as a novel colorectal cancer (CRC) model. We applied histology, immunofluorescence, fluorescence-activated cell sorting, flow cytometry, gene expression quantification, and 3D organoid cultures to whole tissue and single cells from the duodenum, jejunum, ileum, and colon of LGR5-H2B-GFP and wild-type pigs. Ileum and colon LGR5-H2B-GFP, healthy human, and murine biopsies were compared by mRNA fluorescent in situ hybridization (FISH). To model CRC, adenomatous polyposis coli (APC) mutation was induced by CRISPR/Cas9 editing in porcine LGR5-H2B-GFP colonoids. Crypt-base, green fluorescent protein (GFP) expressing cells co-localized with ISC biomarkers. LGR5-H2B-GFPhi cells had significantly higher LGR5 expression (p < .01) and enteroid forming efficiency (p < .0001) compared with LGR5-H2B-GFPmed/lo/neg cells. Using FISH, similar LGR5, OLFM4, HOPX, LYZ, and SOX9 expression was identified between human and LGR5-H2B-GFP pig crypt-base cells. LGR5-H2B-GFP/APCnull colonoids had cystic growth in WNT/R-spondin-depleted media and significantly upregulated WNT/β-catenin target gene expression (p < .05). LGR5+ ISCs are reproducibly isolated in LGR5-H2B-GFP pigs and used to model CRC in an organoid platform. The known anatomical and physiologic similarities between pig and human, and those shown by crypt-base FISH, underscore the significance of this novel LGR5-H2B-GFP pig to translational ISC research.
Identification of a rare Gli1+ progenitor cell population contributing to liver regeneration during chronic injury

Cell discovery

2022 Nov 01

Peng, J;Li, F;Wang, J;Wang, C;Jiang, Y;Liu, B;He, J;Yuan, K;Pan, C;Lin, M;Zhou, B;Chen, L;Gao, D;Zhao, Y;
PMID: 36316325 | DOI: 10.1038/s41421-022-00474-3

In adults, hepatocytes are mainly replenished from the existing progenitor pools of hepatocytes and cholangiocytes during chronic liver injury. However, it is unclear whether other cell types in addition to classical hepatocytes and cholangiocytes contribute to hepatocyte regeneration after chronic liver injuries. Here, we identified a new biphenotypic cell population that contributes to hepatocyte regeneration during chronic liver injuries. We found that a cell population expressed Gli1 and EpCAM (EpCAM+Gli1+), which was further characterized with both epithelial and mesenchymal identities by single-cell RNA sequencing. Genetic lineage tracing using dual recombinases revealed that Gli1+ nonhepatocyte cell population could generate hepatocytes after chronic liver injury. EpCAM+Gli1+ cells exhibited a greater capacity for organoid formation with functional hepatocytes in vitro and liver regeneration upon transplantation in vivo. Collectively, these findings demonstrate that EpCAM+Gli1+ cells can serve as a new source of liver progenitor cells and contribute to liver repair and regeneration.
Pathological Features and Neuroinflammatory Mechanisms of SARS-CoV-2 in the Brain and Potential Therapeutic Approaches

Biomolecules

2022 Jul 11

Sodagar, A;Javed, R;Tahir, H;Razak, SIA;Shakir, M;Naeem, M;Yusof, AHA;Sagadevan, S;Hazafa, A;Uddin, J;Khan, A;Al-Harrasi, A;
PMID: 35883527 | DOI: 10.3390/biom12070971

The number of deaths has been increased due to COVID-19 infections and uncertain neurological complications associated with the central nervous system. Post-infections and neurological manifestations in neuronal tissues caused by COVID-19 are still unknown and there is a need to explore how brainstorming promoted congenital impairment, dementia, and Alzheimer's disease. SARS-CoV-2 neuro-invasion studies in vivo are still rare, despite the fact that other beta-coronaviruses have shown similar properties. Neural (olfactory or vagal) and hematogenous (crossing the blood-brain barrier) pathways have been hypothesized in light of new evidence showing the existence of SARS-CoV-2 host cell entry receptors into the specific components of human nerve and vascular tissue. Spike proteins are the primary key and structural component of the COVID-19 that promotes the infection into brain cells. Neurological manifestations and serious neurodegeneration occur through the binding of spike proteins to ACE2 receptor. The emerging evidence reported that, due to the high rate in the immediate wake of viral infection, the olfactory bulb, thalamus, and brain stem are intensely infected through a trans-synaptic transfer of the virus. It also instructs the release of chemokines, cytokines, and inflammatory signals immensely to the blood-brain barrier and infects the astrocytes, which causes neuroinflammation and neuron death; and this induction of excessive inflammation and immune response developed in more neurodegeneration complications. The present review revealed the pathophysiological effects, molecular, and cellular mechanisms of possible entry routes into the brain, pathogenicity of autoantibodies and emerging immunotherapies against COVID-19.
OVX033, a nucleocapsid-based vaccine candidate, provides broad-spectrum protection against SARS-CoV-2 variants in a hamster challenge model

Frontiers in Immunology

2023 Jun 19

Primard, C;Monchâtre-Leroy, E;Del Campo, J;Valsesia, S;Nikly, E;Chevandier, M;Boué, F;Servat, A;Wasniewski, M;Picard-Meyer, E;Courant, T;Collin, N;Salguero, F;Le Vert, A;Guyon-Gellin, D;Nicolas, F;
| DOI: 10.3389/fimmu.2023.1188605

Spike-based COVID-19 vaccines induce potent neutralizing antibodies but their efficacy against SARS-CoV-2 variants decreases. OVX033 is a recombinant protein composed of the full-length nucleocapsid (N) protein of SARS-CoV-2 genetically fused to oligoDOM , a self-assembling domain which improves antigen immunogenicity. OVX033 including N as an antigenic target is proposed as new vaccine candidate providing broad-spectrum protection against sarbecoviruses. OVX033 demonstrated its ability to trigger cross-reactive T cell responses and cross-protection against three variants of SARS-CoV-2 (B.1 Europe, Delta B.1.617.2, and Omicron B.1.1.529) in a hamster challenge model, as evidenced by lower weight loss, lower lung viral loads, and reduced lung histopathological lesions.
Coronary Stent Abscess in the Setting of Arteriovenous Graft Infection following COVID-19: An Autopsy Case Report

Case reports in pathology

2023 May 03

Butler, JT;Chellappan, R;Litovsky, S;Leal, SM;Benson, PV;
PMID: 37180570 | DOI: 10.1155/2023/9998749

While rare, coronary stent infections present with significant mortality-with most infections and further complications occurring within months of percutaneous coronary intervention (PCI). Here, we discuss a post-COVID-19 patient who presented approximately one year after PCI for declotting of an arteriovenous graft (AVG). Upon admission, the patient was found to be bacteremic with multilobar pneumonia and an infection of the AVG. Empiric antibiotics were started, and blood cultures were subsequently positive for MRSA. Removal of the AVG was unsuccessful, and two days after admission, the patient passed. Autopsy revealed a perivascular abscess in the RCA near the origin of the stent with a ground section of the RCA with stent revealing abundant calcific atherosclerosis and marked necrosis of the artery wall. The cause of death was determined to be sepsis complicating coronary artery disease and chronic renal failure.
Lymphatics act as a signaling hub to regulate intestinal stem cell activity

Cell stem cell

2022 Jun 15

Niec, RE;Chu, T;Schernthanner, M;Gur-Cohen, S;Hidalgo, L;Pasolli, HA;Luckett, KA;Wang, Z;Bhalla, SR;Cambuli, F;Kataru, RP;Ganesh, K;Mehrara, BJ;Pe'er, D;Fuchs, E;
PMID: 35728595 | DOI: 10.1016/j.stem.2022.05.007

Barrier epithelia depend upon resident stem cells for homeostasis, defense, and repair. Epithelial stem cells of small and large intestines (ISCs) respond to their local microenvironments (niches) to fulfill a continuous demand for tissue turnover. The complexity of these niches and underlying communication pathways are not fully known. Here, we report a lymphatic network at the intestinal crypt base that intimately associates with ISCs. Employing in vivo loss of function and lymphatic:organoid cocultures, we show that crypt lymphatics maintain ISCs and inhibit their precocious differentiation. Pairing single-cell and spatial transcriptomics, we apply BayesPrism to deconvolve expression within spatial features and develop SpaceFold to robustly map the niche at high resolution, exposing lymphatics as a central signaling hub for the crypt in general and ISCs in particular. We identify WNT-signaling factors (WNT2, R-SPONDIN-3) and a hitherto unappreciated extracellular matrix protein, REELIN, as crypt lymphatic signals that directly govern the regenerative potential of ISCs.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?