Journal of Neuroendocrinology
Bakalar, D;Gavrilova, O;Jiang, S;Zhang, H;Roy, S;Williams, S;Liu, N;Wisser, S;Usdin, T;Eiden, L;
| DOI: 10.1111/jne.13286
Neuropeptides may exert trophic effects during development, and then neurotransmitter roles in the developed nervous system. One way to associate peptide-deficiency phenotypes with either role is first to assess potential phenotypes in so-called constitutive knockout mice, and then proceed to specify, regionally and temporally, where and when neuropeptide expression is required to prevent these phenotypes. We have previously demonstrated that the well-known constellation of behavioral and metabolic phenotypes associated with constitutive PACAP knockout mice are accompanied by transcriptomic alterations of two types: those that distinguish the PACAP-null phenotype from wild-type in otherwise quiescent mice (cPRGs), and gene induction that occurs in response to acute environmental perturbation in wild-type mice that do not occur in knock-out mice (aPRGs). Comparing constitutive PACAP knock-out mice to a variety of temporally and regionally specific PACAP knock-outs, we show that the prominent hyperlocomotor phenotype is a consequence of early loss of PACAP expression, is associated with Fos overexpression in hippocampus and basal ganglia, and that a thermoregulatory effect previously shown to be mediated by PACAP-expressing neurons of medial preoptic hypothalamus is independent of PACAP expression in those neurons in adult mice. In contrast, PACAP dependence of weight loss/hypophagia triggered by restraint stress, seen in constitutive PACAP knock-out mice, is phenocopied in mice in which PACAP is deleted after neuronal differentiation. Our results imply that PACAP has a prominent role as a trophic factor early in development determining global central nervous system characteristics, and in addition a second, discrete set of functions as a neurotransmitter in the fully developed nervous system that support physiological and psychological responses to stress.
Abdelmesih, B;Anderson, R;Bambah-Mukku, D;Carta, I;Autry, AE;
PMID: 36476733 | DOI: 10.1038/s41380-022-01902-2
Infant avoidance and aggression are promoted by activation of the Urocortin-3 expressing neurons of the perifornical area of hypothalamus (PeFAUcn3) in male and female mice. PeFAUcn3 neurons have been implicated in stress, and stress is known to reduce maternal behavior. We asked how chronic restraint stress (CRS) affects infant-directed behavior in virgin and lactating females and what role PeFAUcn3 neurons play in this process. Here we show that infant-directed behavior increases activity in the PeFAUcn3 neurons in virgin and lactating females. Chemogenetic inhibition of PeFAUcn3 neurons facilitates pup retrieval in virgin females. CRS reduces pup retrieval in virgin females and increases activity of PeFAUcn3 neurons, while CRS does not affect maternal behavior in lactating females. Inhibition of PeFAUcn3 neurons blocks stress-induced deficits in pup-directed behavior in virgin females. Together, these data illustrate the critical role for PeFAUcn3 neuronal activity in mediating the impact of chronic stress on female infant-directed behavior.
Porcu, A;Nilsson, A;Booreddy, S;Barnes, SA;Welsh, DK;Dulcis, D;
PMID: 36054362 | DOI: 10.1126/sciadv.abn9867
Seasonal changes in day length (photoperiod) affect numerous physiological functions. The suprachiasmatic nucleus (SCN)-paraventricular nucleus (PVN) axis plays a key role in processing photoperiod-related information. Seasonal variations in SCN and PVN neurotransmitter expression have been observed in humans and animal models. However, the molecular mechanisms by which the SCN-PVN network responds to altered photoperiod is unknown. Here, we show in mice that neuromedin S (NMS) and vasoactive intestinal polypeptide (VIP) neurons in the SCN display photoperiod-induced neurotransmitter plasticity. In vivo recording of calcium dynamics revealed that NMS neurons alter PVN network activity in response to winter-like photoperiod. Chronic manipulation of NMS neurons is sufficient to induce neurotransmitter switching in PVN neurons and affects locomotor activity. Our findings reveal previously unidentified molecular adaptations of the SCN-PVN network in response to seasonality and the role for NMS neurons in adjusting hypothalamic function to day length via a coordinated multisynaptic neurotransmitter switching affecting behavior.
Hilscher, MM;Langseth, CM;Kukanja, P;Yokota, C;Nilsson, M;Castelo-Branco, G;
PMID: 35610641 | DOI: 10.1186/s12915-022-01325-z
Oligodendrocytes are glial cells that support and insulate axons in the central nervous system through the production of myelin. Oligodendrocytes arise throughout embryonic and early postnatal development from oligodendrocyte precursor cells (OPCs), and recent work demonstrated that they are a transcriptional heterogeneous cell population, but the regional and functional implications of this heterogeneity are less clear. Here, we apply in situ sequencing (ISS) to simultaneously probe the expression of 124 marker genes of distinct oligodendrocyte populations, providing comprehensive maps of the corpus callosum, cingulate, motor, and somatosensory cortex in the brain, as well as gray matter (GM) and white matter (WM) regions in the spinal cord, at postnatal (P10), juvenile (P20), and young adult (P60) stages. We systematically compare the abundances of these populations and investigate the neighboring preference of distinct oligodendrocyte populations.We observed that oligodendrocyte lineage progression is more advanced in the juvenile spinal cord compared to the brain, corroborating with previous studies. We found myelination still ongoing in the adult corpus callosum while it was more advanced in the cortex. Interestingly, we also observed a lateral-to-medial gradient of oligodendrocyte lineage progression in the juvenile cortex, which could be linked to arealization, as well as a deep-to-superficial gradient with mature oligodendrocytes preferentially accumulating in the deeper layers of the cortex. The ISS experiments also exposed differences in abundances and population dynamics over time between GM and WM regions in the brain and spinal cord, indicating regional differences within GM and WM, and we found that neighboring preferences of some oligodendroglia populations are altered from the juvenile to the adult CNS.Overall, our ISS experiments reveal spatial heterogeneity of oligodendrocyte lineage progression in the brain and spinal cord and uncover differences in the timing of oligodendrocyte differentiation and myelination, which could be relevant to further investigate functional heterogeneity of oligodendroglia, especially in the context of injury or disease.
Ritter, JM;Wilson, TM;Gary, JM;Seixas, JN;Martines, RB;Bhatnagar, J;Bollweg, BC;Lee, E;Estetter, L;Silva-Flannery, L;Bullock, HA;Towner, JS;Cossaboom, CM;Wendling, NM;Amman, BR;Harvey, RR;Taylor, D;Rettler, H;Barton Behravesh, C;Zaki, SR;
PMID: 35229669 | DOI: 10.1177/03009858221079665
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes respiratory disease in mink similar to human COVID-19. We characterized the pathological findings in 72 mink from US farms with SARS-CoV-2 outbreaks, localized SARS-CoV-2 and its host cellular receptor angiotensin-converting enzyme 2 (ACE2) in mink respiratory tissues, and evaluated the utility of various test methods and specimens for SARS-CoV-2 detection in necropsy tissues. Of SARS-CoV-2-positive animals found dead, 74% had bronchiolitis and diffuse alveolar damage (DAD). Of euthanized SARS-CoV-2-positive animals, 72% had only mild interstitial pneumonia or minimal nonspecific lung changes (congestion, edema, macrophages); similar findings were seen in SARS-CoV-2-negative animals. Suppurative rhinitis, lymphocytic perivascular inflammation in the lungs, and lymphocytic infiltrates in other tissues were common in both SARS-CoV-2-positive and SARS-CoV-2-negative animals. In formalin-fixed paraffin-embedded (FFPE) upper respiratory tract (URT) specimens, conventional reverse transcription-polymerase chain reaction (cRT-PCR) was more sensitive than in situ hybridization (ISH) or immunohistochemistry (IHC) for detection of SARS-CoV-2. FFPE lung specimens yielded less detection of virus than FFPE URT specimens by all test methods. By IHC and ISH, virus localized extensively to epithelial cells in the nasal turbinates, and prominently within intact epithelium; olfactory mucosa was mostly spared. The SARS-CoV-2 receptor ACE2 was extensively detected by IHC within turbinate epithelium, with decreased detection in lower respiratory tract epithelium and alveolar macrophages. This study expands on the knowledge of the pathology and pathogenesis of natural SARS-CoV-2 infection in mink and supports their further investigation as a potential animal model of SARS-CoV-2 infection in humans.
bioRxiv : the preprint server for biology
Sun, Q;van de Lisdonk, D;Ferrer, M;Gegenhuber, B;Wu, M;Tollkuhn, J;Janowitz, T;Li, B;
PMID: 36711916 | DOI: 10.1101/2023.01.12.523716
Interleukin-6 (IL-6) has been long considered a key player in cancer-associated cachexia 1-15 . It is believed that sustained elevation of IL-6 production during cancer progression causes brain dysfunctions, which ultimately result in cachexia 16-20 . However, how peripheral IL-6 influences the brain remains poorly understood. Here we show that neurons in the area postrema (AP), a circumventricular structure in the hindbrain, mediate the function of IL-6 in cancer-associated cachexia in mice. We found that circulating IL-6 can rapidly enter the AP and activate AP neurons. Peripheral tumor, known to increase circulating IL-6 1-5,15,18,21-23 , leads to elevated IL-6 and neuronal hyperactivity in the AP, and causes potentiated excitatory synaptic transmission onto AP neurons. Remarkably, neutralization of IL-6 in the brain of tumor-bearing mice with an IL-6 antibody prevents cachexia, reduces the hyperactivity in an AP network, and markedly prolongs lifespan. Furthermore, suppression of Il6ra , the gene encoding IL-6 receptor, specifically in AP neurons with CRISPR/dCas9 interference achieves similar effects. Silencing of Gfral-expressing AP neurons also ameliorates the cancer-associated cachectic phenotypes and AP network hyperactivity. Our study identifies a central mechanism underlying the function of peripheral IL-6, which may serve as a target for treating cancer-associated cachexia.
Positive Retrospective SARS-CoV-2 Testing in a Case of Acute Respiratory Distress Syndrome of Unknown Etiology
Case reports in pulmonology
Burkett, A;McElwee, S;Margaroli, C;Bajpai, P;Elkholy, A;Manne, U;Wille, K;Benson, P;
PMID: 34513107 | DOI: 10.1155/2021/5484239
In order to elucidate the cause of acute respiratory distress syndrome of unknown etiology in a pre-pandemic patient, molecular techniques were used for detection of SARS-CoV-2. We used a SARS-CoV-2 nucleocapsid protein immunofluorescence stain to retrospectively identify an individual with diffuse alveolar damage on autopsy histology who had negative respiratory virus panel results in February, 2020, in Birmingham, Alabama. In situ hybridization for SARS-CoV-2 RNA revealed evidence of widespread multiorgan SARS-CoV-2 infection. This death antecedes the first reported death of a State of Alabama resident diagnosed with SARS-CoV-2 by 26 days.
Rabbani, MY;Rappaport, J;Gupta, MK;
PMID: 35203260 | DOI: 10.3390/cells11040611
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is an extremely contagious disease whereby the virus damages the host's respiratory tract via entering through the ACE2 receptor. Cardiovascular disorder is being recognized in the majority of COVID-19 patients; yet, the relationship between SARS-CoV-2 and heart failure has not been established. In the present study, SARS-CoV-2 infection was induced in the monkey model. Thereafter, heart tissue samples were collected, and pathological changes were analyzed in the left ventricular tissue by hematoxylin and eosin, trichrome, and immunohistochemical staining specific to T lymphocytes and macrophages. The findings revealed that SARS-CoV-2 infection induces several pathological changes in the heart, which cause cardiomyocyte disarray, mononuclear infiltrates of inflammatory cells, and hypertrophy. Furthermore, collagen-specific staining showed the development of cardiac fibrosis in the interstitial and perivascular regions in the hearts of infected primates. Moreover, the myocardial tissue samples displayed multiple foci of inflammatory cells positive for T lymphocytes and macrophages within the myocardium. These findings suggest the progression of the disease, which can lead to the development of severe complications, including heart failure. Additionally, SARS-CoV-2 antigen staining detected the presence of virus particles in the myocardium. Thus, we found that SARS-CoV-2 infection is characterized by an exaggerated inflammatory immune response in the heart, which possibly contributes to myocardial remodeling and subsequent fibrosis.
Neutrophil-epithelial interactions augment infectivity and pro-inflammatory responses to SARS-CoV-2 infection
bioRxiv : the preprint server for biology
Calvert, BA;Quiroz, EJ;Lorenzana, Z;Doan, N;Kim, S;Senger, CN;Wallace, WD;Salomon, MP;Henley, JE;Ryan, AL;
PMID: 34401877 | DOI: 10.1101/2021.08.09.455472
In response to viral infection, neutrophils release inflammatory mediators as part of the innate immune response, contributing to pathogen clearance through virus internalization and killing. Pre-existing co-morbidities, correlating to incidence of severe COVID-19, are associated with chronic airway neutrophilia and examination of COVID-19 lung tissue revealed a series of epithelial pathologies associated with infiltration and activation of neutrophils. To determine the impact of neutrophil-epithelial interactions on the infectivity and inflammatory response to SARS-CoV-2 infection, we developed a co-culture model of airway neutrophilia. We discovered that SARS-CoV-2 infection of the airway epithelium alone does not result in a notable release of pro-inflammatory cytokines, however in the presence of neutrophils, the inflammatory response is both polarized and significantly augmented, epithelial barrier integrity in impaired and viral load of the airway epithelium increased. This study reveals a key role for neutrophil-epithelial interactions in determining inflammation, infectivity, and outcomes in response to SARS-CoV-2 infection.We have developed a model to study neutrophil-epithelial interactions which better reflects the in vivo situation than monocultures Neutrophils significantly augment SARS-CoV-2 mediated, pro-inflammatory cytokine release from the epithelium indicating a key interactionSARS-CoV-2 infection leads to a polarized inflammatory response in differentiated airway epitheliumDisruption of the epithelial barrier via addition of neutrophils or cytokines leads to increased infectionStudy reveals a key role for neutrophil-epithelial interactions in determining outcome/infectivity.
The Journal of neuroscience : the official journal of the Society for Neuroscience
Feinberg, PA;Becker, SC;Chung, L;Ferrari, L;Stellwagen, D;Anaclet, C;Durán-Laforet, V;Faust, TE;Sumbria, RK;Schafer, DP;
PMID: 35790400 | DOI: 10.1523/JNEUROSCI.0601-22.2022
Interferon regulatory factor 8 (IRF8) is a transcription factor necessary for the maturation of microglia, as well as other peripheral immune cells. It also regulates the transition of microglia and other immune cells to a pro-inflammatory phenotype. Irf8 is also a known risk gene for multiple sclerosis and lupus and it has recently been shown to be downregulated in schizophrenia. While most studies have focused on IRF8-dependent regulation of immune cell function, little is known about how it impacts neural circuits. Here, we show by RNAseq from Irf8-/- male and female mouse brains that several genes involved in regulation of neural activity are dysregulated. We then show these molecular changes are reflected in heightened neural excitability and a profound increase in susceptibility to lethal seizures in male and female Irf8-/- mice. Finally, we identify that TNF-α is elevated specifically in microglia in the CNS and genetic or acute pharmacological blockade of TNF-α in the Irf8-/- central nervous system (CNS) rescued the seizure phenotype. These results provide important insights into the consequences of IRF8 signaling and TNF-α on neural circuits. Our data further suggest that neuronal function is impacted by loss of IRF8, a factor involved in neuropsychiatric and neurodegenerative diseases.SIGNIFICANCE STATEMENTHere, we identify a previously unknown and key role for Interferon regulator factor 8 (IRF8) in regulating neural excitability and seizures. We further determine these effects on neural circuits are through elevated TNF-α in the CNS. As IRF8 has most widely been studied in the context of regulating the development and inflammatory signaling in microglia and other immune cells, we have uncovered a novel function. Further, IRF8 is a risk gene for multiple sclerosis (MS) and lupus, IRF8 is dysregulated in schizophrenia, and elevated TNF-α has been identified in a multitude of neurological conditions. Thus, elucidating these IRF8 and TNF-α-dependent effects on brain circuit function have profound implications for understanding underlying, therapeutically-relevant mechanisms of disease.
Emerging microbes & infections
Li, C;Song, W;Chan, JF;Chen, Y;Liu, F;Ye, Z;Lam, AH;Cai, J;Lee, AC;Wong, BH;Chu, H;Lung, DC;Sridhar, S;Chen, H;Zhang, AJ;Yuen, KY;
PMID: 37122119 | DOI: 10.1080/22221751.2023.2207678
SummaryIntranasal infection of newly-weaned Syrian hamsters by SARS-CoV-2 Omicron variants can lead to brain inflammation and neuron degeneration with detectable low viral load and sparse expression of viral nucleoprotein.AbstractChildren infected by SARS-CoV-2 Omicron variant may develop neurological complications. To study the pathogenesis in the growing brain, we intranasally challenged newly-weaned or mature hamsters with SARS-CoV-2 Omicron BA.2, BA.5 or Delta variant. Omicron BA.2 and Delta infection produced a significantly lower viral load in the lung tissues of newly-weaned than mature hamsters despite comparable histopathological damages. Newly-weaned hamsters had higher brain viral load, significantly increased cerebrospinal fluid concentration of TNF-α and CXCL10 and inflammatory damages including mild meningitis and parenchymal vascular congestion, despite sparse expression of nucleocapsid antigen in brain cells. Furthermore, 63.6% (28/44) of all SARS-CoV-2 infected newly-weaned hamsters showed microgliosis in olfactory bulb, cerebral cortex and hippocampus. In infected mature hamsters, microgliosis were observed mainly in olfactory bulb and olfactory cortex of 35.3% (12/34) of their brains. Neuronal degeneration was found in 75% (33/44) of newly-weaned hamsters affecting multiple regions including olfactory bulb, olfactory cortex, midbrain cortex and hippocampus, while such changes were mainly observed in hippocampus of mature hamsters. Importantly, similar brain histopathology was observed in Omicron BA.5 infected newly-weaned hamsters. Our study suggested that SARS-CoV-2 may affect the brain at young age. This kind of brain involvement and histological changes are not virus variant or subvariant specific. Incidentally, moderate amount of eosinophilic infiltration was observed in the mucosa of nasal turbinate and trachea of newly-weaned hamsters infected by Omicron BA.2 and BA.5 but not Delta variant. This histological finding is consistent with the higher incidence of laryngotracheobronchitis in young children infected by the Omicron variant.
Annals of Diagnostic Pathology
Mezache, L;Nuovo, G;Suster, D;Tili, E;Awad, H;Radwański, P;Veeraraghavan, R;
| DOI: 10.1016/j.anndiagpath.2022.151983
Cardiac manifestations are common in severe COVID-19. This study compared the histologic, viral, and molecular findings in cardiac tissue in fatal COVID-19 (n = 11) and controls (n = 11). In situ hybridization (SARS-CoV2 RNA) and immunohistochemistry for viral proteins and the host response were quantified for the samples and compared with qRTPCR and Western blot data. Control hearts showed a high resident population of macrophages that had variable ACE2 expression. Cardiac ACE2 expression was 10× greater in the heart tissues of cases and controls with obesity or type II diabetes. Multifocal endothelial cell swelling and degeneration, perivascular edema plus microvascular thrombi were unique to the cases. SARS-CoV2 RNA and nucleocapsid protein were rarely detected in situ in any COVID-19 heart. However, in each case abundant SARS-CoV-2 spike protein was evident. Co-expression experiments showed that the spike protein localized mostly to the ACE2+ interstitial macrophages/pericytes that were activated as evidenced by increased IL6 and TNFα expression. Western blots confirmed the presence of the viral spike protein, but not the nucleocapsid protein, in the cardiac homogenates. The intercalated disc proteins connexin 43, the primary cardiac gap junction protein, and NaV1.5, the predominant cardiac sodium channel, each showed marked lateral migration in the myocytes in the cases, which would increase the risk of reentrant arrhythmias. It is concluded that the viral spike protein, endocytosed by macrophages/pericytes, can induce a myocarditis with the possibility of conduction dysfunction due to abnormal localization of key intercalated disc proteins.