Aslan, GS;Jaé, N;Manavski, Y;Fouani, Y;Shumliakivska, M;Kettenhausen, L;Kirchhof, L;Günther, S;Fischer, A;Luxán, G;Dimmeler, S;
PMID: 36883566 | DOI: 10.1172/jci.insight.162124
The adult mammalian heart has limited regenerative capacity, while the neonatal heart fully regenerates during the first week of life. Postnatal regeneration is mainly driven by proliferation of preexisting cardiomyocytes and supported by proregenerative macrophages and angiogenesis. Although the process of regeneration has been well studied in the neonatal mouse, the molecular mechanisms that define the switch between regenerative and nonregenerative cardiomyocytes are not well understood. Here, using in vivo and in vitro approaches, we identified the lncRNA Malat1 as a key player in postnatal cardiac regeneration. Malat1 deletion prevented heart regeneration in mice after myocardial infarction on postnatal day 3 associated with a decline in cardiomyocyte proliferation and reparative angiogenesis. Interestingly, Malat1 deficiency increased cardiomyocyte binucleation even in the absence of cardiac injury. Cardiomyocyte-specific deletion of Malat1 was sufficient to block regeneration, supporting a critical role of Malat1 in regulating cardiomyocyte proliferation and binucleation, a landmark of mature nonregenerative cardiomyocytes. In vitro, Malat1 deficiency induced binucleation and the expression of a maturation gene program. Finally, the loss of hnRNP U, an interaction partner of Malat1, induced similar features in vitro, suggesting that Malat1 regulates cardiomyocyte proliferation and binucleation by hnRNP U to control the regenerative window in the heart.
Computational intelligence and neuroscience
Zhao, Y;Yan, G;Mi, J;Wang, G;Yu, M;Jin, D;Tong, X;Wang, X;
PMID: 35528328 | DOI: 10.1155/2022/8400106
Long noncoding RNA (lncRNA) is involved in the occurrence and development of diabetic kidney disease (DKD). It is necessary to identify the expression of lncRNA from DKD patients through systematic reviews, and then carry out silico analyses to recognize the dysregulated lncRNA and their associated pathways.The study searched Pubmed, Embase, Cochrane Library, WanFang, VIP, CNKI, and CBM to find lncRNA studies on DKD published before March 1, 2021. Systematic review of the literature on this topic was conducted to determine the expression of lncRNA in DKD and non-DKD controls. For the dysregulated lncRNA in DKD patients, silico analysis was performed, and lncRNA2Target v2.0 and starBase were used to search for potential target genes of lncRNA. The Encyclopedia of Genomics (KEGG) pathway enrichment analysis was performed to better identify dysregulated lncRNAs in DKD and determine the associated signal pathways.According to the inclusion and exclusion criteria, 28 publications meeting the eligibility criteria were included in the systematic evaluation. A total of 3,394 patients were enrolled in this study, including 1,238 patients in DKD group, and 1,223 diabetic patients, and 933 healthy adults in control group. Compared with the control, there were eight lncRNA disorders in DKD patients (MALAT1, GAS5, MIAT, CASC2, NEAT1, NR_033515, ARAP1-AS2, and ARAP1-AS1). In addition, five lncRNAs (MALAT1, GAS5, MIAT, CASC2, and NEAT1) participated in disease-related signal pathways, indicating their role in DKD. Discussion. This study showed that there were eight lncRNAs in DKD that were persistently dysregulated, especially five lncRNAs which were closely related to the disease. Although systematic review included 28 studies that analyzed the expression of lncRNA in DKD-related tissues, the potential of these dysregulated lncRNAs as biomarkers or therapeutic targets for DKD remains to be further explored. Trial registration. PROSPERO (CRD42021248634).
Gene-targeted, CREB-mediated induction of ΔFosB controls distinct downstream transcriptional patterns within D1 and D2 medium spiny neurons
Lardner, C;van der Zee, Y;Estill, M;Kronman, H;Salery, M;Cunningham, A;Godino, A;Parise, E;Kim, J;Neve, R;Shen, L;Hamilton, P;Nestler, E;
| DOI: 10.1016/j.biopsych.2021.06.017
Background The onset and persistence of addiction phenotypes are, in part, mediated by transcriptional mechanisms in the brain that affect gene expression and subsequently neural circuitry. ΔFosB is a transcription factor that accumulates in the nucleus accumbens (NAc) – a brain region responsible for coordinating reward and motivation – after exposure to virtually every known rewarding substance, including cocaine and opioids. ΔFosB has also been shown to directly control gene transcription and behavior downstream of both cocaine and opioid exposure, but with potentially different roles in D1 and D2 medium spiny neurons (MSNs) in NAc. Methods To clarify MSN subtype-specific roles for ΔFosB, and investigate how these coordinate the actions of distinct classes of addictive drugs in NAc, we developed a CRISPR/Cas9-based epigenome editing tool to induce endogenous ΔFosB expression in vivo in the absence of drug exposure. After inducing ΔFosB in D1 or D2 MSNs, or both, we performed RNA-sequencing on bulk male and female NAc tissue (N = 6-8/group). Results We find that ΔFosB induction elicits distinct transcriptional profiles in NAc by MSN subtype and by sex, establishing for the first time that ΔFosB mediates different transcriptional effects in males vs females. We also demonstrate that changes in D1 MSNs, but not in D2 MSNs or both, significantly recapitulate changes in gene expression induced by cocaine self-administration. Conclusions Together, these findings demonstrate the efficacy of a novel molecular tool for studying cell-type-specific transcriptional mechanisms, and shed new light on the activity of ΔFosB, a critical transcriptional regulator of drug addiction.
Duan, Y;Yue, K;Ye, B;Chen, P;Zhang, J;He, Q;Wu, Y;Lai, Q;Li, H;Wu, Y;Jing, C;Wang, X;
PMID: 36813772 | DOI: 10.1038/s41419-023-05667-6
Long non-coding RNAs (LncRNAs) are implicated in malignant progression of human cancers. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a well-known lncRNA, has been reported to play crucial roles in multiple malignancies including head and neck squamous cell carcinoma (HNSCC). However, the underlying mechanisms of MALAT1 in HNSCC progression remain to be further investigated. Here, we elucidated that compared with normal squamous epithelium, MALAT1 was notably upregulated in HNSCC tissues, especially in which was poorly differentiated or with lymph nodes metastasis. Moreover, elevated MALAT1 predicted unfavorable prognosis of HNSCC patients. The results of in vitro and in vivo assays showed that targeting MALAT1 could significantly weaken the capacities of proliferation and metastasis in HNSCC. Mechanistically, MALAT1 inhibited von Hippel-Lindau tumor suppressor (VHL) by activating EZH2/STAT3/Akt axis, then promoted the stabilization and activation of β-catenin and NF-κB which could play crucial roles in HNSCC growth and metastasis. In conclusion, our findings reveal a novel mechanism for malignant progression of HNSCC and suggest that MALAT1 might be a promising therapeutic target for HNSCC treatment.
Single-cell transcriptomics reveals lasting changes in the lung cellular landscape into adulthood after neonatal hyperoxic exposure
Scaffa, A;Yao, H;Oulhen, N;Wallace, J;Peterson, AL;Rizal, S;Ragavendran, A;Wessel, G;De Paepe, ME;Dennery, PA;
PMID: 34417156 | DOI: 10.1016/j.redox.2021.102091
Ventilatory support, such as supplemental oxygen, used to save premature infants impairs the growth of the pulmonary microvasculature and distal alveoli, leading to bronchopulmonary dysplasia (BPD). Although lung cellular composition changes with exposure to hyperoxia in neonatal mice, most human BPD survivors are weaned off oxygen within the first weeks to months of life, yet they may have persistent lung injury and pulmonary dysfunction as adults. We hypothesized that early-life hyperoxia alters the cellular landscape in later life and predicts long-term lung injury. Using single-cell RNA sequencing, we mapped lung cell subpopulations at postnatal day (pnd)7 and pnd60 in mice exposed to hyperoxia (95% O2) for 3 days as neonates. We interrogated over 10,000 cells and identified a total of 45 clusters within 32 cell states. Neonatal hyperoxia caused persistent compositional changes in later life (pnd60) in all five type II cell states with unique signatures and function. Premature infants requiring mechanical ventilation with different durations also showed similar alterations in these unique signatures of type II cell states. Pathologically, neonatal hyperoxic exposure caused alveolar simplification in adult mice. We conclude that neonatal hyperoxia alters the lung cellular landscape in later life, uncovering neonatal programing of adult lung dysfunction.
A cyclic AMP related gene network in microglia is inversely regulated by morphine tolerance and withdrawal
Biological Psychiatry Global Open Science
Coffey, K;Lesiak, A;Marx, R;Vo, E;Garden, G;Neumaier, J;
| DOI: 10.1016/j.bpsgos.2021.07.011
Background Microglia have recently been implicated in opioid dependence and withdrawal. Mu Opioid (MOR) receptors are expressed in microglia, and microglia form intimate connections with nearby neurons. Accordingly, opioids have both direct (MOR mediated) and indirect (neuron-interaction mediated) effects on microglia function. Methods To investigate this directly, we used RNA sequencing of ribosome-associated RNAs from striatal microglia (RiboTag-Seq) after the induction of morphine tolerance and followed by naloxone precipitated withdrawal (n=16). We validated the RNA-Seq data by combining fluorescent in-situ hybridization with immunohistochemistry for microglia (n=18). Finally, we expressed and activated the Gi/o-coupled hM4Di DREADD receptor in CX3CR1-expressing cells during morphine withdrawal (n=18). Results We detected large, inverse changes in RNA translation following opioid tolerance and withdrawal. WGCNA analysis revealed an intriguing network of cAMP-associated genes that are known to be involved in microglial motility, morphology, and interactions with neurons that were downregulated with morphine tolerance and upregulated rapidly by withdrawal. Three-dimensional histological reconstruction of microglia allowed for volumetric, visual colocalization of mRNA within individual microglia that validated our bioinformatics results. Direct activation of Gi/o-coupled DREADD receptors in CX3CR1-expressing cells exacerbated signs of opioid withdrawal rather than mimicking the effects of morphine. Conclusions These results indicate that Gi-signaling and cAMP-associated gene networks are inversely engaged during opioid tolerance and early withdrawal, perhaps revealing a role of microglia in mitigating the consequences of opioids.
Moreno, E;Casajuana-Martin, N;Coyle, M;Campos, BC;Galaj, E;Del Torrent, CL;Seyedian, A;Rea, W;Cai, NS;Bonifazi, A;Florán, B;Xi, ZX;Guitart, X;Casadó, V;Newman, AH;Bishop, C;Pardo, L;Ferré, S;
PMID: 36182040 | DOI: 10.1016/j.phrs.2022.106476
A main rationale for the role of G protein-coupled receptor (GPCR) heteromers as targets for drug development is the putative ability of selective ligands for specific GPCRs to change their pharmacological properties upon GPCR heteromerization. The present study provides a proof of concept for this rationale by demonstrating that heteromerization of dopamine D1 and D3 receptors (D1R and D3R) influences the pharmacological properties of three structurally similar selective dopamine D3R ligands, the phenylpiperazine derivatives PG01042, PG01037 and VK4-116. By using D1R-D3R heteromer-disrupting peptides, it could be demonstrated that the three D3R ligands display different D1R-D3R heteromer-dependent pharmacological properties: PG01042, acting as G protein-biased agonist, counteracted D1R-mediated signaling in the D1R-D3R heteromer; PG01037, acting as a D3R antagonist cross-antagonized D1R-mediated signaling in the D1R-D3R heteromer; and VK4-116 specifically acted as a ß-arrestin-biased agonist in the D1R-D3R heteromer. Molecular dynamics simulations predicted potential molecular mechanisms mediating these qualitatively different pharmacological properties of the selective D3R ligands that are dependent on D1R-D3R heteromerization. The results of in vitro experiments were paralleled by qualitatively different pharmacological properties of the D3R ligands in vivo. The results supported the involvement of D1R-D3R heteromers in the locomotor activation by D1R agonists in reserpinized mice and L-DOPA-induced dyskinesia in rats, highlighting the D1R-D3R heteromer as a main pharmacological target for L-DOPA-induced dyskinesia in Parkinson's disease. More generally, the present study implies that when suspecting its pathogenetic role, a GPCR heteromer, and not its individual GPCR units, should be considered as main target for drug development.
Hypothalamic dopamine neurons motivate mating through persistent cAMP signalling
Zhang, SX;Lutas, A;Yang, S;Diaz, A;Fluhr, H;Nagel, G;Gao, S;Andermann, ML;
PMID: 34433964 | DOI: 10.1038/s41586-021-03845-0
Transient neuromodulation can have long-lasting effects on neural circuits and motivational states1-4. Here we examine the dopaminergic mechanisms that underlie mating drive and its persistence in male mice. Brief investigation of females primes a male's interest to mate for tens of minutes, whereas a single successful mating triggers satiety that gradually recovers over days5. We found that both processes are controlled by specialized anteroventral and preoptic periventricular (AVPV/PVpo) dopamine neurons in the hypothalamus. During the investigation of females, dopamine is transiently released in the medial preoptic area (MPOA)-an area that is critical for mating behaviours. Optogenetic stimulation of AVPV/PVpo dopamine axons in the MPOA recapitulates the priming effect of exposure to a female. Using optical and molecular methods for tracking and manipulating intracellular signalling, we show that this priming effect emerges from the accumulation of mating-related dopamine signals in the MPOA through the accrual of cyclic adenosine monophosphate levels and protein kinase A activity. Dopamine transients in the MPOA are abolished after a successful mating, which is likely to ensure abstinence. Consistent with this idea, the inhibition of AVPV/PVpo dopamine neurons selectively demotivates mating, whereas stimulating these neurons restores the motivation to mate after sexual satiety. We therefore conclude that the accumulation or suppression of signals from specialized dopamine neurons regulates mating behaviours across minutes and days.
Barutcu, AR;Wu, M;Braunschweig, U;Dyakov, BJA;Luo, Z;Turner, KM;Durbic, T;Lin, ZY;Weatheritt, RJ;Maass, PG;Gingras, AC;Blencowe, BJ;
PMID: 35182477 | DOI: 10.1016/j.molcel.2021.12.010
The nucleus is highly compartmentalized through the formation of distinct classes of membraneless domains. However, the composition and function of many of these structures are not well understood. Using APEX2-mediated proximity labeling and RNA sequencing, we surveyed human transcripts associated with nuclear speckles, several additional domains, and the lamina. Remarkably, speckles and lamina are associated with distinct classes of retained introns enriched in genes that function in RNA processing, translation, and the cell cycle, among other processes. In contrast to the lamina-proximal introns, retained introns associated with speckles are relatively short, GC-rich, and enriched for functional sites of RNA-binding proteins that are concentrated in these domains. They are also highly differentially regulated across diverse cellular contexts, including the cell cycle. Thus, our study provides a resource of nuclear domain-associated transcripts and further reveals speckles and lamina as hubs of distinct populations of retained introns linked to gene regulation and cell cycle progression.