Bogdanov, V;Soltisz, A;Beard, C;Hernandez Orengo, B;Sakuta, G;Veeraraghavan, R;Davis, J;Gyorke, S;
| DOI: 10.1016/j.bpj.2022.11.1389
Aberrant Ca-CaM signaling has been implicated in various congenital and acquired cardiac pathologies, including arrhythmia, hypertrophy, and HF. We examined the impact of HF induced by trans-aortic constriction (TAC) on the distribution of the three CaM mRNAs (Calm 1,2 and 3) and their key protein target mRNAs (Ryr2, Scn5a, Camk2d, NOS1 and Cacna1c) in cardiomyocytes, using fluorescence in situ hybridization (RNAScope™). HF resulted in specific changes in the pattern of localization of Calms, manifested in redistribution of Calm3 from the cell periphery towards the perinuclear area and enhanced Calm2 attraction to the perinuclear area compared to sham myocytes. Additionally, HF resulted in redistribution of mRNAs for certain CaM target mRNAs. Particularly, NOS1 localization shifted from the cell periphery towards the perinuclear area, Cacna1c, Camk2d and Scn5a abundance increased at the perinuclear area, and Ryr2 attracted even closer to the cell periphery in HF myocytes compared to sham myocytes. The strength of non-random attraction/repulsion was measured as the maximal deviation between the observed distribution of nearest neighbor distances from the distribution predicted under complete spatial randomness. Consistent with the observed alterations in abundance and distribution of CaM and CaM target mRNAs, HF resulted in increased attraction between Calm1 and Scn5a, Ryr2 and Camk2d, between Calm2 and Ryr2 and Camk2d; and between Calm3 and NOS1 and Scn5a. In contrast, the attraction between Calm3 and Ryr2 decreased in HF myocytes compared to sham. Collectively, these results suggest distribution of Calms and their association with key target protein mRNAs undergo substantial alterations in heart failure. These results have new important implications for organization of Ca signaling in normal and diseased heart.
Medvedev, R;Turner, D;Gorelik, J;Alvarado, F;Bondarenko, V;Glukhov, A;
| DOI: 10.1016/j.bpj.2022.11.1392
Atrial fibrillation (AF) is commonly observed in patients with hypertension and is associated with pathologically elevated cardiomyocyte stretch. AF triggers have been linked to subcellular Ca2+ abnormalities, while their association with stretch remains elusive. Caveolae are mechanosensitive membrane structures, that play a role in both Ca2+ and cyclic adenosine monophosphate (cAMP) signaling. Therefore, caveolae could provide a mechanistic connection between cardiomyocyte stretch, Ca2+ mishandling, and AF. In isolated mouse atrial myocytes, cell stretch was mimicked by hypotonic swelling, which increased cell width (by ∼30%, p
Smith, RJ;Liang, M;Loe, AKH;Yung, T;Kim, JE;Hudson, M;Wilson, MD;Kim, TH;
PMID: 36717563 | DOI: 10.1038/s41467-023-36228-2
Epithelial-mesenchymal signaling in the gastrointestinal system is vital in establishing regional identity during organogenesis and maintaining adult stem cell homeostasis. Although recent work has demonstrated that Wnt ligands expressed by mesenchymal cells are required during gastrointestinal development and stem cell homeostasis, epigenetic mechanisms driving spatiotemporal control of crosstalk remain unknown. Here, we demonstrate that gastrointestinal mesenchymal cells control epithelial fate and function through Polycomb Repressive Complex 2-mediated chromatin bivalency. We find that while key lineage-determining genes possess tissue-specific chromatin accessibility, Polycomb Repressive Complex 2 controls Wnt expression in mesenchymal cells without altering accessibility. We show that reduction of mesenchymal Wnt secretion rescues gastrointestinal fate and proliferation defects caused by Polycomb Repressive Complex 2 loss. We demonstrate that mesenchymal Polycomb Repressive Complex 2 also regulates niche signals to maintain stem cell function in the adult intestine. Our results highlight a broadly permissive chromatin architecture underlying regionalization in mesenchymal cells, then demonstrate further how chromatin architecture in niches can influence the fate and function of neighboring cells.
The circadian clock gene, Bmal1, regulates intestinal stem cell signaling and represses tumor initiation
Cellular and molecular gastroenterology and hepatology
Stokes, K;Nunes, M;Trombley, C;Flôres, DEFL;Wu, G;Taleb, Z;Alkhateeb, A;Banskota, S;Harris, C;Love, OP;Khan, WI;Rueda, L;Hogenesch, JB;Karpowicz, P;
PMID: 34534703 | DOI: 10.1016/j.jcmgh.2021.08.001
Circadian rhythms are daily physiological oscillations driven by the circadian clock: a 24-hour transcriptional timekeeper that regulates hormones, inflammation, and metabolism. Circadian rhythms are known to be important for health, but whether their loss contributes to colorectal cancer is not known.We tested the non-redundant clock gene, Bmal1, in intestinal homeostasis and tumorigenesis, using the Apcmin model of colorectal cancer.Bmal1 mutant, epithelium-conditional Bmal1 mutant, and photoperiod-disrupted mice bearing the Apcmin allele were assessed for tumorigenesis. Tumors and normal non-transformed tissue were characterized. Intestinal organoids were assessed for circadian transcription rhythms by RNA-sequencing, and in vivo and organoid assays were used to test Bmal1-dependent proliferation and self-renewal.Loss of Bmal1 or circadian photoperiod increases tumor initiation. In the intestinal epithelium the clock regulates transcripts involved in regeneration and intestinal stem cell signaling. Tumors have no self-autonomous clock function and only weak clock function in vivo. Apcmin clock-disrupted tumors exhibit high Yap (Hippo signaling) activity but exhibit low Wnt activity. Intestinal organoid assays reveal that loss of Bmal1 increases self-renewal in a Yap-dependent manner.Bmal1 regulates intestinal stem cell pathways, including Hippo signaling, and the loss of circadian rhythms potentiates tumor initiation.
Ramlow, L;Falcke, M;Lindner, B;
| DOI: 10.1016/j.bpj.2022.11.1390
Stochastic spiking is a prominent feature of Ca2+ signaling. The main noise source at the cellular level are puffs from inositol-trisphosphate receptor (IP3R) channel clusters in the membrane of the endoplasmic reticulum (ER). While the random cluster activity has been known for decades, a stringent method to derive the puff noise term acting on the cytosolic Ca2+ concentration is still lacking. We adopt a popular description of neural spike generation from neuroscience, the stochastic integrate-and-fire (IF) model, to describe Ca2+ spiking. Our model consists of two components describing i) activity of IP3R clusters and ii) dynamics of the global Ca2+ concentrations in the cytosol and in the ER. Cluster activity is modeled by a Markov chain, capturing the puff. The global Ca2+ concentrations are described by a two-variable IF model driven by the puff current. For the Markov chain we derive expressions for the statistics of interpuff interval, single-puff strength, and puff current assuming constant cytosolic Ca2+, an assumption often well met because the Ca2+ concentrations vary much slower than the cluster activity does. The latter assumption also allows to approximate the driving Ca2+ dependent puff current by a white Gaussian noise. This approximation results in an IF model with nonlinear drift and multiplicative noise. We consider this reduced model in a renewal version and in a version with cumulative refractoriness. Neglecting ER depletion, the stochastic IF model has only one variable and generates a renewal spike train, a point process with statistically independent interspike intervals (ISI). We derive analytical expressions for the mean and coefficient of variation of the ISI and suggest approximations for the ISI density and spike-train power spectrum. Taking into account ER depletion, the two-variable IF model displays cumulative refractoriness as seen in experimental data.
Rodriguez, M;Tsai, C;Tsai, M;
| DOI: 10.1016/j.bpj.2022.11.1391
The mitochondrial calcium uniporter is a multi-subunit calcium channel that imports Ca2+ into mitochondria. Its MICU subunits (MICU1, MICU2, and the neuron-specific MICU3) gate the channel by blocking the pore in low Ca2+. Upon local Ca2+ elevation, Ca2+ binds to MICUs to cause MICU unblock, thus opening the pore so Ca2+ can permeate. Previous work using cell lines suggests that the uniporter in mammalian cells is exclusively regulated by a MICU1-MICU2 heterodimer. However, we show here that multiple types of electrically excitable cells, including skeletal muscle and cardiac tissues, can also possess a MICU1-MICU1 homodimer or virtually no MICUs. Kinetic analyses demonstrate that MICU1 has a higher Ca2+ affinity than MICU2, and that without MICUs the uniporter is constitutively open. As a result, uniporters with the MICU1-1 homodimer or no MICUs exhibit higher transport activities, leading to mitochondria accumulating much higher levels of matrix Ca2+. Using a Seahorse assay, we show that cells with MICU1-1 or no MICUs have impaired basal oxidative phosphorylation, likely due to increased ROS and damaged respiratory-complex proteins, including NDUFS3 and COX2. These cells, moreover, are highly susceptible to apoptosis. The disadvantage of employing MICU1-1 or omitting MICUs, however, accompanies strong physiological benefits. We show that in response to intracellular Ca2+ signals, these mitochondria import more Ca2+ and consequently produce more ATP, thus better supplying the energy required for the cellular processes initiated by the Ca2+ signals. In conclusion, this work reveals that tissues can manipulate their mitochondrial calcium uptake properties to suit their unique physiological needs by customizing their MICU regulation of the mitochondrial calcium uniporter.
Investigative Ophthalmology & Visual Science
Zhu, X;Xu, M;Grachtchouk, M;
RESULTS : Short-term lineage tracing data showed that _Lrig1_, _Lgr6_ and _Axin2_ label basal cells in MG ducts and acini. Long-term lineage tracing results showed that clones of labeled cells persist through multiple rounds of ductal and acinar renewal and give rise to differentiated progeny, identifying _Lrig1_+, _Lgr6_+ and _Axin2+_ ductal and acinar basal cells as self-renewing SCs. Forced expression of GLI2ΔN enhanced basal proliferation, caused expansion of _Lrig1_+ SCs, and lead to replacement of lipid-filled meibocytes by proliferative and poorly differentiated acinar cells. Transcriptional profiling of GLI2ΔN-expressing and control MGs revealed that forced GLI2ΔN expression caused greatly increased expression of _Lrig1_ and _Lgr6_ and suppressed expression of meibocyte differentiation genes.
Martin, M;Vermeiren, S;Bostaille, N;Eubelen, M;Spitzer, D;Vermeersch, M;Profaci, CP;Pozuelo, E;Toussay, X;Raman-Nair, J;Tebabi, P;America, M;De Groote, A;Sanderson, LE;Cabochette, P;Germano, RFV;Torres, D;Boutry, S;de Kerchove d'Exaerde, A;Bellefroid, EJ;Phoenix, TN;Devraj, K;Lacoste, B;Daneman, R;Liebner, S;Vanhollebeke, B;
PMID: 35175798 | DOI: 10.1126/science.abm4459
The blood-brain barrier (BBB) protects the central nervous system (CNS) from harmful blood-borne factors. Although BBB dysfunction is a hallmark of several neurological disorders, therapies to restore BBB function are lacking. An attractive strategy is to repurpose developmental BBB regulators, such as Wnt7a, into BBB-protective agents. However, safe therapeutic use of Wnt ligands is complicated by their pleiotropic Frizzled signaling activities. Taking advantage of the Wnt7a/b-specific Gpr124/Reck co-receptor complex, we genetically engineered Wnt7a ligands into BBB-specific Wnt activators. In a "hit-and-run" adeno-associated virus-assisted CNS gene delivery setting, these new Gpr124/Reck-specific agonists protected BBB function, thereby mitigating glioblastoma expansion and ischemic stroke infarction. This work reveals that the signaling specificity of Wnt ligands is adjustable and defines a modality to treat CNS disorders by normalizing the BBB.