Lee, D;Helal, Z;Kim, J;Hunt, A;Barbieri, A;Tocco, N;Frasca, S;Kerr, K;Hyeon, J;Chung, D;Risatti, G;
| DOI: 10.3390/v13112141
We report the first detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a 3-month-old dog in Connecticut that died suddenly and was submitted to the state veterinary diagnostic laboratory for postmortem examination. Viral RNA was detected in multiple organs of the dog by reverse transcription real time-PCR (RT-qPCR). Negative and positive sense strands of viral RNA were visualized by in situ hybridization using RNAscope technology. Complete genome sequencing and phylogenetic analysis of the hCoV-19/USA/CT-CVMDL-Dog-1/2021 (CT_Dog/2021) virus were conducted to identify the origin and lineage of the virus. The CT_Dog/2021 virus belonged to the GH/B1.2. genetic lineage and was genetically similar to SARS-CoV-2 identified in humans in the U.S. during the winter of 2020-2021. However, it was not related to other SARS-CoV-2 variants identified from companion animals in the U.S. It contained both the D614G in spike and P323L in nsp12 substitutions, which have become the dominant mutations in the United States. The continued sporadic detections of SARS-CoV-2 in companion animals warrant public health concerns about the zoonotic potential of SARS-CoV-2 and enhance our collective understanding of the epidemiology of the virus.
Choudhary, S;Kanevsky, I;Yildiz, S;Sellers, RS;Swanson, KA;Franks, T;Rathnasinghe, R;Munoz-Moreno, R;Jangra, S;Gonzalez, O;Meade, P;Coskran, T;Qian, J;Lanz, TA;Johnson, JG;Tierney, CA;Smith, JD;Tompkins, K;Illenberger, A;Corts, P;Ciolino, T;Dormitzer, PR;Dick, EJ;Shivanna, V;Hall-Ursone, S;Cole, J;Kaushal, D;Fontenot, JA;Martinez-Romero, C;McMahon, M;Krammer, F;Schotsaert, M;García-Sastre, A;
PMID: 35128980 | DOI: 10.1177/01926233211072767
Coronavirus disease 2019 (COVID-19) in humans has a wide range of presentations, ranging from asymptomatic or mild symptoms to severe illness. Suitable animal models mimicking varying degrees of clinical disease manifestations could expedite development of therapeutics and vaccines for COVID-19. Here we demonstrate that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection resulted in subclinical disease in rhesus macaques with mild pneumonia and clinical disease in Syrian hamsters with severe pneumonia. SARS-CoV-2 infection was confirmed by formalin-fixed, paraffin-embedded (FFPE) polymerase chain reaction (PCR), immunohistochemistry, or in situ hybridization. Replicating virus in the lungs was identified using in situ hybridization or virus plaque forming assays. Viral encephalitis, reported in some COVID-19 patients, was identified in one macaque and was confirmed with immunohistochemistry. There was no evidence of encephalitis in hamsters. Severity and distribution of lung inflammation were substantially more in hamsters compared with macaques and exhibited vascular changes and virus-induced cytopathic changes as seen in COVID-19 patients. Neither the hamster nor macaque models demonstrated evidence for multisystemic inflammatory syndrome (MIS). Data presented here demonstrate that macaques may be appropriate for mechanistic studies of mild asymptomatic COVID-19 pneumonia and COVID-19-associated encephalitis, whereas Syrian hamsters may be more suited to study severe COVID-19 pneumonia.
Glycated ACE2 receptor in diabetes: open door for SARS-COV-2 entry in cardiomyocyte
Cardiovascular diabetology
D'Onofrio, N;Scisciola, L;Sardu, C;Trotta, MC;De Feo, M;Maiello, C;Mascolo, P;De Micco, F;Turriziani, F;Municinò, E;Monetti, P;Lombardi, A;Napolitano, MG;Marino, FZ;Ronchi, A;Grimaldi, V;Hermenean, A;Rizzo, MR;Barbieri, M;Franco, R;Campobasso, CP;Napoli, C;Municinò, M;Paolisso, G;Balestrieri, ML;Marfella, R;
PMID: 33962629 | DOI: 10.1186/s12933-021-01286-7
About 50% of hospitalized coronavirus disease 2019 (COVID-19) patients with diabetes mellitus (DM) developed myocardial damage. The mechanisms of direct SARS-CoV-2 cardiomyocyte infection include viral invasion via ACE2-Spike glycoprotein-binding. In DM patients, the impact of glycation of ACE2 on cardiomyocyte invasion by SARS-CoV-2 can be of high importance. To evaluate the presence of SARS-CoV-2 in cardiomyocytes from heart autopsy of DM cases compared to Non-DM; to investigate the role of DM in SARS-COV-2 entry in cardiomyocytes. We evaluated consecutive autopsy cases, deceased for COVID-19, from Italy between Apr 30, 2020 and Jan 18, 2021. We evaluated SARS-CoV-2 in cardiomyocytes, expression of ACE2 (total and glycosylated form), and transmembrane protease serine protease-2 (TMPRSS2) protein. In order to study the role of diabetes on cardiomyocyte alterations, independently of COVID-19, we investigated ACE2, glycosylated ACE2, and TMPRSS2 proteins in cardiomyocytes from DM and Non-DM explanted-hearts. Finally, to investigate the effects of DM on ACE2 protein modification, an in vitro glycation study of recombinant human ACE2 (hACE2) was performed to evaluate the effects on binding to SARS-CoV-2 Spike protein. The authors included cardiac tissue from 97 autopsies. DM was diagnosed in 37 patients (38%). Fourth-seven out of 97 autopsies (48%) had SARS-CoV-2 RNA in cardiomyocytes. Thirty out of 37 DM autopsy cases (81%) and 17 out of 60 Non-DM autopsy cases (28%) had SARS-CoV-2 RNA in cardiomyocytes. Total ACE2, glycosylated ACE2, and TMPRSS2 protein expressions were higher in cardiomyocytes from autopsied and explanted hearts of DM than Non-DM. In vitro exposure of monomeric hACE2 to 120 mM glucose for 12 days led to non-enzymatic glycation of four lysine residues in the neck domain affecting the protein oligomerization. The upregulation of ACE2 expression (total and glycosylated forms) in DM cardiomyocytes, along with non-enzymatic glycation, could increase the susceptibility to COVID-19 infection in DM patients by favouring the cellular entry of SARS-CoV2.
Tissue factor upregulation is associated with SARS-CoV-2 in the lungs of COVID-19 patients
Journal of thrombosis and haemostasis : JTH
Subrahmanian, S;Borczuk, A;Salvatore, S;Fung, KM;Merrill, JT;Laurence, J;Ahamed, J;
PMID: 34236752 | DOI: 10.1111/jth.15451
A substantial proportion of patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop severe/critical coronavirus disease 2019 (COVID-19) characterized by acute respiratory distress syndrome (ARDS) with thrombosis.We tested the hypothesis that SARS-CoV-2--induced upregulation of tissue factor (TF) expression may be responsible for thrombus formation in COVID-19.We compared autopsy lung tissues from 11 patients with COVID-19--associated ARDS with samples from 6 patients with ARDS from other causes (non-COVID-19 ARDS) and 11 normal control lungs.Dual RNA in situ hybridization for SARS-CoV-2 and TF identified sporadic clustered SARS-CoV-2 with prominent co-localization of SARS-CoV-2 and TF RNA. TF expression was 2-fold higher in COVID-19 than in non-COVID-19 ARDS lungs (P = .017) and correlated with the intensity of SARS-CoV-2 staining (R2 = .36, P = .04). By immunofluorescence, TF protein expression was 2.1-fold higher in COVID-19 versus non-COVID-19 ARDS lungs (P = .0048) and 11-fold (P < .001) higher than control lungs. Fibrin thrombi and thrombi positive for platelet factor 4 (PF4) were found in close proximity to regions expressing TF in COVID-19 ARDS lung, and correlated with TF expression (fibrin, R2 = .52, P < .001; PF4, R2 = .59, P < .001).These data suggest that upregulation of TF expression is associated with thrombus formation in COVID-19 lungs and could be a key therapeutic target. Correlation of TF expression with SARS-CoV-2 in lungs of COVID-19 patients also raises the possibility of direct TF induction by the virus.
Robustelli Test, E;Sena, P;Locatelli, AG;Carugno, A;di Mercurio, M;Moggio, E;Gambini, DM;Arosio, MEG;Callegaro, A;Morotti, D;Gianatti, A;Vezzoli, P;
PMID: 34989043 | DOI: 10.1111/pde.14903
Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, an increasing number of chilblain-like lesions (ChLL) have been increasingly reported worldwide. To date, the causal link between ChLL and SARS-CoV-2 infection has not been unequivocally established.In this case series, we present demographic, clinical, laboratory, and histopathological information regarding 27 young patients with a clinical diagnosis of ChLL who referred to the Dermatology Unit of Papa Giovanni XXIII Hospital, Bergamo, Italy, from 1 April 2020 to 1 June 2020.The mean age was 14.2 years, and 21 patients (78%) experienced mild systemic symptoms a median of 28 days before the onset of cutaneous lesions. ChLL mostly involved the feet (20 patients - 74%). Among acral lesions, we identified three different clinical patterns: (i) chilblains in 20 patients (74%); (ii) fixed erythematous macules in 4 children (15%); (iii) erythrocyanosis in 3 female patients (11%). Blood examinations and viral serologies, including parvovirus B19, cytomegalovirus (CMV), Epstein-Barr virus (EBV), and coxsackievirus were normal in all. Three patients (11%) underwent nasopharyngeal swab for RT-PCR for SARS-CoV-2 showing only 1 positive. Histopathological examinations of 7 skin biopsies confirmed the clinical diagnosis of chilblains; vessel thrombi were observed only in 1 case. Our findings failed to demonstrate the direct presence of SARS-CoV-2 RNA in skin biopsies, both with real-time polymerase chain reaction (RT-PCR) and RNAscope in situ hybridization (ISH).Limited number of cases, unavailability of laboratory confirmation of COVID-19 in all patients, potential methodological weakness, and latency of skin biopsies in comparison to cutaneous lesions onset.These observations may support the hypothesis of an inflammatory pathogenesis rather than the presence of peripheral viral particles. Although, we could not exclude an early phase of viral endothelial damage followed by an IFN-I or complement-mediated inflammatory phase. Further observations on a large number of patients are needed to confirm this hypothesis.
Thibault S, Hu W, Hirakawa B, Kalabat D, Franks T, Sung T, Khoh-Reiter S, Lu S, Finkelstein M, Jessen B, Sacaan AI.
PMID: 30401694 | DOI: 10.1158/1535-7163.MCT-18-0734
Recently three different cyclin-dependent kinase 4 and 6 (CDK4/6) dual inhibitors were approved for the treatment of breast cancer (palbociclib, ribociclib and abemaciclib), all of which offer comparable therapeutic benefits. Their safety profiles however are different. For example, neutropenia is observed at varying incidences in patients treated with these drugs; however it is the most common adverse event for palbociclib and ribociclib, whereas diarrhea is the most common adverse event observed in patients treated with abemaciclib. In order to understand the mechanism of diarrhea observed with these drugs and in an effort to guide the development of safer drugs, we compared the effects of oral administration of palbociclib, ribociclib and abemaciclib on the gastrointestinal tract of rats using doses intended to produce comparable CDK4/6 inhibition. Rats administered abemaciclib, but not palbociclib or ribociclib, had fecal alterations, unique histopathological findings and distinctive changes in intestinal gene expression. Morphologic changes in the intestine were characterized by proliferation of crypt cells, loss of goblet cells, poorly differentiated and degenerating enterocytes with loss of microvilli and mucosal inflammation. In the jejunum of abemaciclib-treated rats, down-regulation of enterocyte membrane transporters and up-regulation of genes associated with cell proliferation were observed, consistent with activation of the Wnt pathway and downstream transcriptional regulation. Among these CDK4/6 inhibitors, intestinal toxicity was unique to rats treated with abemaciclib, suggesting a mechanism of toxicity not due to primary pharmacology (CDK4/6 inhibition), but to activity at secondary pharmacological targets.
Gastrointestinal Pathology in Samples from Coronavirus Disease 2019 (COVID-19)-Positive Patients
Archives of pathology & laboratory medicine
Westerhoff, M;Jones, D;Hrycaj, SM;Chan, MP;Pantanowitz, L;Tu, H;Choi, K;Greenson, J;Lamps, L;
PMID: 33961007 | DOI: 10.5858/arpa.2021-0137-SA
-Although primarily considered a respiratory illness, coronavirus disease 2019 (COVID-19) can cause gastrointestinal manifestations. -To evaluate histopathology and in situ hybridization for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in gastrointestinal samples from patients with recent and remote COVID-19. -Patients with positive SARS-CoV-2 nasopharyngeal tests and a gastrointestinal tissue specimen were included. SARS-CoV-2 in situ hybridization (ISH) was performed on each sample. A subset had SARS-CoV-2 next generation sequencing (NGS) performed. -Twenty-five patients met inclusion criteria. Five had positive SARS-CoV-2 nasopharyngeal tests within 7 days of their gastrointestinal procedure. Two were ulcerative colitis patients on steroid therapy who lacked typical COVID-19 symptoms. Their colectomies showed severe ulcerative colitis; one demonstrated SARS-CoV-2 by NGS but a negative ISH. Another had an ischemic colon resected as a complication of the COVID-19 course; however, both ISH and NGS were negative. A fourth had a normal-appearing terminal ileum but positive ISH and NGS. The fifth patient had ileal ulcers with SARS-CoV-2 negativity by both modalities. The remaining 20 patients had positive nasopharyngeal tests an average of 53 days prior to procedure. None of their samples demonstrated SARS-CoV-2 ISH positivity, but one was positive on NGS despite a negative nasopharyngeal test. -Gastrointestinal findings from SARS-CoV-2-infected patients ranged from normal with virus detected by ISH and NGS, to bowel ischemia secondary to systemic viral effects, without evidence of virus in the tissue. No distinct histologic finding was identified in those with gastrointestinal tissue specimens demonstrating SARS-CoV-2 positivity in this cohort.
Eady EK, Brasch HD, de Jongh J, Marsh RW, Tan ST and Itinteang T
PMID: 30901291 | DOI: 10.1089/lrb.2018.0046
AIM: To investigate the expression of embryonic stem cell (ESC) markers in microcystic lymphatic malformation (mLM). METHODS AND RESULTS: Cervicofacial mLM tissue samples from nine patients underwent 3,3'-diaminobenzidine (DAB) immunohistochemical (IHC) staining for ESC markers octamer-binding protein 4 (OCT4), homeobox protein NANOG, sex determining region Y-box 2 (SOX2), Krupple-like factor (KLF4), and proto-oncogene c-MYC. Transcriptional activation of these ESC markers was investigated using real-time polymerase chain reaction (RT-qPCR) and colorimetric in situ hybridization (CISH) on four and five of these mLM tissue samples, respectively. Immunofluorescence (IF) IHC staining was performed on three of these mLM tissue samples to investigate localization of these ESC markers. DAB and IF IHC staining demonstrated the expression of OCT4, SOX2, NANOG, KLF4, and c-MYC on the endothelium of lesional vessels with abundant expression of c-MYC and SOX2, which was also present on the cells within the stroma, in all nine mLM tissue samples. RT-qPCR and CISH confirmed transcriptional activation of all these ESC markers investigated. CONCLUSIONS: These findings suggest the presence of a primitive population on the endothelium of lesional vessels and the surrounding stroma in mLM. The abundant expression of the progenitor-associated markers SOX2 and c-MYC suggests that the majority are of progenitor phenotype with a small number of ESC-like cells.
Stenton, S;McPartland, J;Shukla, R;Turner, K;Marton, T;Hargitai, B;Bamber, A;Pryce, J;Peres, CL;Burguess, N;Wagner, B;Ciolka, B;Simmons, W;Hurrell, D;Sekar, T;Moldovan, C;Trayers, C;Bryant, V;Palm, L;Cohen, MC;
PMID: 35465646 | DOI: 10.1016/j.eclinm.2022.101389
Pregnant women with SARS-CoV-2 infection experience higher rates of stillbirth and preterm birth. A unique pattern of chronic histiocytic intervillositis (CHI) and/or massive perivillous fibrin deposition (MPFD) has emerged, coined as SARS-CoV-2 placentitis.The aim of this study was to describe a cohort of placentas diagnosed with SARS-CoV-2 placentitis during October 2020-March 2021. Cases with a histological diagnosis of SARS-CoV-2 placentitis and confirmatory immunohistochemistry were reported. Maternal demographic data, pregnancy outcomes and placental findings were collected.59 mothers delivered 61 infants with SARS-CoV-2 placentitis. The gestational age ranged from 19 to 41 weeks with most cases (78.6%) being third trimester. 30 infants (49.1%) were stillborn or late miscarriages. Obese mothers had higher rates of pregnancy loss when compared with those with a BMI <30 [67% (10/15) versus 41% (14/34)]. 47/59 (79.7%) mothers had a positive SARS-CoV-2 PCR test either at the time of labour or in the months before, of which 12 (25.5%) were reported to be asymptomatic. Ten reported only CHI, two cases showed MPFD only and in 48 placentas both CHI and MPFD was described.SARS-CoV2 placentitis is a distinct entity associated with increased risk of pregnancy loss, particularly in the third trimester. Women can be completely asymptomatic and still experience severe placentitis. Unlike 'classical' MPFD, placentas with SARS-CoV-2 are generally normal in size with adequate fetoplacental weight ratios. Further work should establish the significance of the timing of maternal SARS-CoV-2 infection and placentitis, the significance of SARS-CoV2 variants, and rates of vertical transmission associated with this pattern of placental inflammation.There was not funding associated with this study.
Molecular Pathology Analysis of SARS-CoV-2 in Syncytiotrophoblast and Hofbauer Cells in Placenta from a Pregnant Woman and Fetus with COVID-19
Pathogens (Basel, Switzerland)
Morotti, D;Cadamuro, M;Rigoli, E;Sonzogni, A;Gianatti, A;Parolin, C;Patanè, L;Schwartz, DA;
PMID: 33920814 | DOI: 10.3390/pathogens10040479
A small number of neonates delivered to women with SARS-CoV-2 infection have been found to become infected through intrauterine transplacental transmission. These cases are associated with a group of unusual placental pathology abnormalities that include chronic histiocytic intervillositis, syncytiotrophoblast necrosis, and positivity of the syncytiotrophoblast for SARS-CoV-2 antigen or RNA. Hofbauer cells constitute a heterogeneous group of immunologically active macrophages that have been involved in transplacental infections that include such viral agents as Zika virus and human immunodeficiency virus. The role of Hofbauer cells in placental infection with SARS-CoV-2 and maternal-fetal transmission is unknown. This study uses molecular pathology techniques to evaluate the placenta from a neonate infected with SARS-CoV-2 via the transplacental route to determine whether Hofbauer cells have evidence of infection. We found that the placenta had chronic histiocytic intervillositis and syncytiotrophoblast necrosis, with the syncytiotrophoblast demonstrating intense positive staining for SARS-CoV-2. Immunohistochemistry using the macrophage marker CD163, SARS-CoV-2 nucleocapsid protein, and double staining for SARS-CoV-2 with RNAscope and anti-CD163 antibody, revealed that no demonstrable virus could be identified within Hofbauer cells, despite these cells closely approaching the basement membrane zone of the infected trophoblast. Unlike some other viruses, there was no evidence from this transmitting placenta for infection of Hofbauer cells with SARS-CoV-2.
Life (Basel, Switzerland)
Paterson, C;Kilmister, EJ;Brasch, HD;Bockett, N;Patel, J;Paterson, E;Purdie, G;Galvin, S;Davis, PF;Itinteang, T;Tan, ST;
PMID: 34685477 | DOI: 10.3390/life11101106
The stemness-associated markers OCT4, NANOG, SOX2, KLF4 and c-MYC are expressed in numerous cancer types suggesting the presence of cancer stem cells (CSCs). Immunohistochemical (IHC) staining performed on 12 lung adenocarcinoma (LA) tissue samples showed protein expression of OCT4, NANOG, SOX2, KLF4 and c-MYC, and the CSC marker CD44. In situ hybridization (ISH) performed on six of the LA tissue samples showed mRNA expression of OCT4, NANOG, SOX2, KLF4 and c-MYC. Immunofluorescence staining performed on three of the tissue samples showed co-expression of OCT4 and c-MYC with NANOG, SOX2 and KLF4 by tumor gland cells, and expression of OCT4 and c-MYC exclusively by cells within the stroma. RT-qPCR performed on five LA-derived primary cell lines showed mRNA expression of all the markers except SOX2. Western blotting performed on four LA-derived primary cell lines demonstrated protein expression of all the markers except SOX2 and NANOG. Initial tumorsphere assays performed on four LA-derived primary cell lines demonstrated 0-80% of tumorspheres surpassing the 50 µm threshold. The expression of the stemness-associated markers OCT4, SOX2, NANOG, KFL4 and c-MYC by LA at the mRNA and protein level, and the unique expression patterns suggest a putative presence of CSC subpopulations within LA, which may be a novel therapeutic target for this cancer. Further functional studies are required to investigate the possession of stemness traits.
Shivapathasundram G, Wickremesekera AC, Brasch HD, Marsh R, Tan ST, Itinteang T.
PMID: - | DOI: 10.3389/fsurg.2018.00065
Aim: The presence of cells within meningioma (MG) that express embryonic stem cell (ESC) markers has been previously reported. However, the precise location of these cells has yet to be determined.
Methods: 3,3-Diaminobenzidine (DAB) immunohistochemical (IHC) staining was performed on 11 WHO grade I MG tissue samples for the expression of the ESC markers OCT4, NANOG, SOX2, KLF4 and c-MYC. Immunofluorescence (IF) IHC staining was performed to investigate the localization of each of these ESC markers. NanoString and colorimetric in situ hybridization (CISH) mRNA expression analyses were performed on six snap-frozen MG tissue samples to confirm transcriptional activation of these proteins, respectively.
Results: DAB IHC staining demonstrated expression of OCT4, NANOG, SOX2, KLF4, and c-MYC within all 11 MG tissue samples. IF IHC staining demonstrated the expression of the ESC markers OCT4, NANOG, SOX2, KLF4, and c-MYC on both the endothelial and pericyte layers of the microvessels. NanoString and CISH mRNA analyses confirmed transcription activation of these ESC markers.
Conclusion: This novel finding of the expression of all aforementioned ESC markers in WHO grade I MG infers the presence of a putative stem cells population which may give rise to MG.