Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (695)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • SARS-CoV-2 (28) Apply SARS-CoV-2 filter
  • Lgr5 (26) Apply Lgr5 filter
  • Axin2 (24) Apply Axin2 filter
  • ZIKV (20) Apply ZIKV filter
  • V-nCoV2019-S (11) Apply V-nCoV2019-S filter
  • GLI1 (9) Apply GLI1 filter
  • Wnt5a (8) Apply Wnt5a filter
  • Bmp4 (7) Apply Bmp4 filter
  • HIV (7) Apply HIV filter
  • Wnt10a (6) Apply Wnt10a filter
  • Wnt10b (6) Apply Wnt10b filter
  • Wnt7b (6) Apply Wnt7b filter
  • COL1A1 (6) Apply COL1A1 filter
  • Dkk1 (6) Apply Dkk1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • Wnt3a (6) Apply Wnt3a filter
  • TGFB1 (5) Apply TGFB1 filter
  • Wnt1 (5) Apply Wnt1 filter
  • Wnt4 (5) Apply Wnt4 filter
  • Ptch1 (5) Apply Ptch1 filter
  • FGFR2 (5) Apply FGFR2 filter
  • Wnt2b (5) Apply Wnt2b filter
  • Wnt5b (5) Apply Wnt5b filter
  • Vegfa (5) Apply Vegfa filter
  • IL-10 (5) Apply IL-10 filter
  • Bmp2 (5) Apply Bmp2 filter
  • WNT2 (5) Apply WNT2 filter
  • Sfrp2 (5) Apply Sfrp2 filter
  • Wnt3 (5) Apply Wnt3 filter
  • OLFM4 (5) Apply OLFM4 filter
  • SARS-CoV-2  (5) Apply SARS-CoV-2  filter
  • Dkk3 (4) Apply Dkk3 filter
  • Wnt16 (4) Apply Wnt16 filter
  • Wnt7a (4) Apply Wnt7a filter
  • Fgfr3 (4) Apply Fgfr3 filter
  • Sox9 (4) Apply Sox9 filter
  • IL17A (4) Apply IL17A filter
  • FGFR1 (4) Apply FGFR1 filter
  • Wnt11 (4) Apply Wnt11 filter
  • Wnt8a (4) Apply Wnt8a filter
  • Wnt8b (4) Apply Wnt8b filter
  • Wnt9a (4) Apply Wnt9a filter
  • Wnt9b (4) Apply Wnt9b filter
  • SHH (4) Apply SHH filter
  • Col2a1 (4) Apply Col2a1 filter
  • CXCL12 (4) Apply CXCL12 filter
  • Adamts18 (4) Apply Adamts18 filter
  • Ackr2 (4) Apply Ackr2 filter
  • EBOV (4) Apply EBOV filter
  • Wnt6 (3) Apply Wnt6 filter

Product

  • (-) Remove RNAscope 2.5 HD Red assay filter RNAscope 2.5 HD Red assay (695)

Research area

  • Cancer (134) Apply Cancer filter
  • Neuroscience (106) Apply Neuroscience filter
  • Other (95) Apply Other filter
  • Infectious Disease (87) Apply Infectious Disease filter
  • Inflammation (69) Apply Inflammation filter
  • Infectious (50) Apply Infectious filter
  • Development (49) Apply Development filter
  • Covid (48) Apply Covid filter
  • Stem Cells (34) Apply Stem Cells filter
  • lncRNA (13) Apply lncRNA filter
  • Developmental (12) Apply Developmental filter
  • Immunotherapy (11) Apply Immunotherapy filter
  • HIV (8) Apply HIV filter
  • HPV (8) Apply HPV filter
  • diabetes (6) Apply diabetes filter
  • Endocrinology (6) Apply Endocrinology filter
  • LncRNAs (6) Apply LncRNAs filter
  • Metabolism (6) Apply Metabolism filter
  • Other: Zoological Disease (6) Apply Other: Zoological Disease filter
  • Skin (5) Apply Skin filter
  • Stem cell (5) Apply Stem cell filter
  • Teeth (4) Apply Teeth filter
  • Aging (3) Apply Aging filter
  • CGT (3) Apply CGT filter
  • Eyes (3) Apply Eyes filter
  • Kidney (3) Apply Kidney filter
  • Other: Heart (3) Apply Other: Heart filter
  • Other: Lung (3) Apply Other: Lung filter
  • Other: Skin (3) Apply Other: Skin filter
  • Other: Veterinary Science (3) Apply Other: Veterinary Science filter
  • Reproduction (3) Apply Reproduction filter
  • Vaccine (3) Apply Vaccine filter
  • Vaccines (3) Apply Vaccines filter
  • Virology (3) Apply Virology filter
  • Bone (2) Apply Bone filter
  • Fibrosis (2) Apply Fibrosis filter
  • Infectious Disease: E. coli (2) Apply Infectious Disease: E. coli filter
  • Infectious Disease: Ebola virus disease (2) Apply Infectious Disease: Ebola virus disease filter
  • Lung (2) Apply Lung filter
  • osteoarthritis (2) Apply osteoarthritis filter
  • other: Aging (2) Apply other: Aging filter
  • Other: Bone (2) Apply Other: Bone filter
  • Other: Methods (2) Apply Other: Methods filter
  • Other: Poultry science (2) Apply Other: Poultry science filter
  • Pathophysiology (2) Apply Pathophysiology filter
  • Sex Differences (2) Apply Sex Differences filter
  • Signalling (2) Apply Signalling filter
  • therapeutics (2) Apply therapeutics filter
  • Vet Medicine (2) Apply Vet Medicine filter
  • Veterinary Science (2) Apply Veterinary Science filter

Category

  • Publications (695) Apply Publications filter
Idiopathic multicentric Castleman’s disease: a clinicopathologic study in comparison with IgG4-related disease

Oncotarget.

2018 Jan 09

Otani K, Inoue D, Fujikura K, Komori T, Abe-Suzuki S, Tajiri T, Itoh T, Zen Y.
PMID: - | DOI: 10.18632/oncotarget.24068

The present study aimed to compare clinicopathologic features between idiopathic multicentric Castleman’s disease (n=22) and IgG4-related disease (n=26). Histology was analyzed using lymph node and lung biopsies. The expression of IL-6 mRNA in tissue was also examined by in situ hybridization and real-time PCR. Patients with idiopathic multicentric Castleman’s disease were significantly younger than those with IgG4-related disease (p<0.001). Splenomegaly was observed in only idiopathic multicentric Castleman’s disease (p=0.002), while pancreatitis and sialo-dacryoadenitis were restricted to IgG4-related disease (both p<0.001). Serum IgG4 concentrations were commonly elevated at >135 mg/dL in both groups (p=0.270). However, the IgG4/IgG ratio in IgG4-related disease was significantly higher than that in Castleman’s disease (p<0.001). Histologically, sheet-like plasmacytosis was highly characteristic of idiopathic multicentric Castleman’s disease (p<0.001), while plasmacytic infiltration in IgG4-related disease was always associated with intervening lymphocytes. Similar to laboratory findings, the IgG4/IgG-positive plasma cell ratio, but not the IgG4-positive cell count, was significantly higher in IgG4-related disease (p=0.002). Amyloid-like hyalinized fibrosis was found in 6/8 lung biopsies (75%) of Castleman’s disease. The over-expression of IL-6 mRNA was not confirmed in tissue samples of Castleman’s disease by either in situhybridization or quantitative real-time PCR. In conclusion, useful data for a differential diagnosis appear to be age, affected organs, the serum IgG4/IgG ratio, sheet-like plasmacytosis in biopsies, and the IgG4/IgG-positive cell ratio on immunostaining. Since IL-6 was not over-expressed in tissue of idiopathic multicentric Castleman’s disease, IL-6 may be produced outside the affected organs, and circulating IL-6 may lead to lymphoplasmacytosis at nodal and extranodal sites.

Protective paraspeckle hyper-assembly downstream of TDP-43 loss of function in amyotrophic lateral sclerosis.

Mol Neurodegener.

2018 Jun 01

Shelkovnikova TA, Kukharsky MS, An H, Dimasi P, Alexeeva S, Shabir O, Heath PR, Buchman VL.
PMID: 29859124 | DOI: 10.1186/s13024-018-0263-7

Abstract

BACKGROUND:

Paraspeckles are subnuclear bodies assembled on a long non-coding RNA (lncRNA) NEAT1. Their enhanced formation in spinal neurons of sporadic amyotrophic lateral sclerosis (ALS) patients has been reported but underlying mechanisms are unknown. The majority of ALS cases are characterized by TDP-43 proteinopathy. In current study we aimed to establish whether and how TDP-43 pathology may augment paraspeckle assembly.

METHODS:

Paraspeckle formation in human samples was analysed by RNA-FISH and laser capture microdissection followed by qRT-PCR. Mechanistic studies were performed in stable cell lines, mouse primary neurons and human embryonic stem cell-derived neurons. Loss and gain of function for TDP-43 and other microRNA pathway factors were modelled by siRNA-mediated knockdown and protein overexpression.

RESULTS:

We show that de novo paraspeckle assembly in spinal neurons and glial cells is a hallmark of both sporadic and familial ALS with TDP-43 pathology. Mechanistically, loss of TDP-43 but not its cytoplasmic accumulation or aggregation augments paraspeckle assembly in cultured cells. TDP-43 is a component of the microRNA machinery, and recently, paraspeckles have been shown to regulate pri-miRNA processing. Consistently, downregulation of core protein components of the miRNA pathway also promotes paraspeckle assembly. In addition, depletion of these proteins or TDP-43 results in accumulation of endogenous dsRNA and activation of type I interferon response which also stimulates paraspeckle formation. We demonstrate that human or mouse neurons in vitro lack paraspeckles, but a synthetic dsRNA is able to trigger their de novo formation. Finally, paraspeckles are protective in cells with compromised microRNA/dsRNA metabolism, and their assembly can be promoted by a small-molecule microRNA enhancer.

CONCLUSIONS:

Our study establishes possible mechanisms behind paraspeckle hyper-assembly in ALS and suggests their utility as therapeutic targets in ALS and other diseases with abnormal metabolism of microRNA and dsRNA.

KIAA1199 expression and hyaluronan degradation colocalize in multiple sclerosis lesions.

Glycobiology.

2018 Jul 07

Marella M, Jadin L, Keller GA, Sugarman BJ, Frost GI, Shepard HM.
PMID: 30007349 | DOI: 10.1093/glycob/cwy064

Abstract

OBJECTIVE:

Modification of hyaluronan (HA) accumulation has been shown to play a key role in regulating inflammatory processes linked to the progression of multiple sclerosis (MS). The aim of this study was to characterize the enzymatic activity involved in HA degradation observed within focal demyelinating lesions in the experimental autoimmune encephalomyelitis (EAE) animal model.

METHODS:

EAE was induced in 3-month-old female C57BL/6J mice by immunization with myelin oligodendrocyte glycoprotein 33-35 (MOG33-35) peptide. The mice were monitored for 21 days. Formalin-fixed paraffin-embedded tissue from control and EAE mice were labeled with an immunoadhesin against hyaluronan, antibodies against KIAA1199, and glial fibrillary acidic protein (GFAP), a marker for astrocytes. In situ hybridization was conducted using a KIAA1199 nucleic acid probe.

RESULTS:

In histologic sections of spinal cord from EAE mice, abnormal HA accumulation was observed in the close vicinity of the affected areas, whereas HA was totally degraded within the focal loci of damaged tissue. KIAA1199 immunoreactivity was exclusively associated with focal loci in damaged white columns of the spinal cord. KIAA1199 was mainly expressed by activated astrocytes that invaded damaged tissue. Similar findings were observed in tissue from an MS patient.

INTERPRETATION:

Here, we show that KIAA1199, a protein that plays a role in an HA degradation pathway independent of the canonical hyaluronidases such as PH20, is specifically expressed in tissue lesions in which HA is degraded. KIAA1199 expression by activated astrocytes may explain the focal HA degradation observed during progression of MS and could represent a possible new therapeutic target.

Non-neuronal TRPA1 encodes mechanical allodynia associated with neurogenic inflammation and partial nerve injury in rats

British journal of pharmacology

2022 Dec 09

De Logu, F;De Siena, G;Landini, L;Marini, M;Souza Monteiro de Araujo, D;Albanese, V;Preti, D;Romitelli, A;Chieca, M;Titiz, M;Iannone, LF;Geppetti, P;Nassini, R;
PMID: 36494916 | DOI: 10.1111/bph.16005

The proalgesic transient receptor potential ankyrin 1 (TRPA1) channel, expressed by a subpopulation of primary sensory neurons, has been implicated in various pain models in mice. However, evidence in rats indicates that TRPA1 conveys nociceptive signals elicited by channel activators, but not those associated with tissue inflammation or nerve injury. Here, in rats, we explored the TRPA1 role in mechanical allodynia associated with stimulation of peptidergic primary sensory neurons (neurogenic inflammation) and moderate (partial sciatic nerve ligation, pSNL) or severe (chronic constriction injury, CCI) sciatic nerve injury.Acute nociception and mechanical hypersensitivity associated with neurogenic inflammation and sciatic nerve injury (pSNL and CCI) were investigated in rats with TRPA1 pharmacological antagonism or genetic silencing. TRPA1 presence and function were analyzed in cultured rat Schwann cells.Hind paw mechanical allodynia (HPMA), but not acute nociception, evoked by local injection of capsaicin or allyl isothiocyanate, the TRP vanilloid 1 (TRPV1) or the TRPA1 activators was mediated by CGRP released from peripheral sensory nerve terminals. CGRP-evoked HPMA was sustained by a ROS-dependent TRPA1 activation, probably in Schwann cells. HPMA evoked by pSNL, but not that evoked by CCI, was mediated by ROS and TRPA1 without the involvement of CGRP.As found in mice, TRPA1 mediates mechanical allodynia associated with neurogenic inflammation and moderate nerve injury in rats. The channel contribution to mechanical hypersensitivity is a common feature in rodents and might be explored in humans.This article is protected by
ADAMTS18 regulates vaginal opening through influencing the fusion of Mullerian duct and apoptosis of vaginal epithelial cells in mice

Reproductive biology

2021 Jul 13

Lin, X;Wang, C;Zhang, Q;Pan, YH;Dang, S;Zhang, W;
PMID: 34271244 | DOI: 10.1016/j.repbio.2021.100537

The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin Motifs) enzymes are secreted metalloproteinases with major roles in development, morphogenesis, and tissue repair via the assembly and degradation of extracellular matrix (ECM). In this study, we investigated the role of ADAMTS18 in the development of the reproductive tract in female mice by phenotyping Adamts18 knockout (Adamts18-/-) mice. The results showed that Adamst18 mRNAs were abundantly expressed in vaginal epithelial cells and muscularis cells of the developing vagina. At the time of vaginal opening (5 weeks of age), about 41 % of Adamts18-/- females showed enlarged protrusions in the upper and middle parts of the vagina, reduced vaginal length, and simultaneously exhibited vaginal atresia. 6% Adamts18-/- females exhibited vaginal septum. Histological analyses revealed that the paired Mullerian ducts in ∼33 % female Adamts18-/- embryos failed to fuse at embryonic day 15.5 (E15.5) resulting in the formation of two vaginal cavities. Results of TUNEL assay and immunohistochemistry for caspase-3 showed that the number of apoptotic cells in the terminal portion of the vagina of 5-week-old Adamts18-/- females with vaginal atresia was significantly decreased. Adamts18-/- females also showed a significant decrease in serum estradiol E2 compared to age-matched Adamts18+/+ females. Results of qRT-PCR showed that the expression level of the anti-apoptosis gene Bcl-2 was significantly increased and that of the apoptosis-related gene Epha1 was decreased in the vagina of 5-week-old Adamts18-/- females. These results suggest that ADAMTS18 regulates vaginal opening through influencing the fusion of Mullerian ducts and apoptosis of vaginal cells in mice.
Expression of the potassium‐chloride co‐transporter, KCC2, within the avian song system

J Comp Neurol.

2017 Dec 08

Vaaga CE, Miller KE, Bodor AL, Perkel DJ.
PMID: 29218745 | DOI: 10.1002/cne.24372

Songbirds learn to produce vocalizations early in life by listening to, then copying the songs of conspecific males. The anterior forebrain pathway, homologous to a basal ganglia-forebrain circuit, is essential for song learning. The projection between the striato-pallidal structure, Area X, and the medial portion of the dorsolateral thalamic nucleus (DLM) is strongly hyperpolarizing in adults, due to a very negative chloride reversal potential (Person and Perkel, 2005). The chloride reversal potential is determined, in part, by the expression level of a neuron-specific potassium-chloride cotransporter, KCC2, which is developmentally upregulated in mammals. To determine whether a similar upregulation in KCC2 expression occurs at the Area X to DLM synapse during development, we examined the expression level of KCC2 in adult zebra finches across the song system as well as during development in the Area X - DLM synapse. We demonstrate that KCC2 is expressed in a subset of neurons throughout the song system, including HVC (used as a proper name), robust nucleus of the arcopallium (RA), lateral magnocellular nucleus of the anterior nidopallium (LMAN), Area X, and DLM. The majority of pallidal-like projection neurons in Area X showed KCC2 immunoreactivity. In adults, KCC2 expression was robust within DLM, and was upregulated between 14-24 days post hatching, before the onset of song learning. Light and electron microscopic analysis indicated that KCC2 immunoreactivity is strongly associated with the plasma membrane. Thus, in the song system as in the mammalian brain, KCC2 expression is well placed to modulate the GABAA reversal potential.

The first reptilian circovirus identified infects gut and liver tissues of black-headed pythons.

Vet Res. 2019 May 16;50(1):35.

2019 May 16

Altan E, Kubiski SV, Burchell J, Bicknese E, Deng X, Delwart E.
PMID: 31097029 | DOI: 10.1186/s13567-019-0653-z

Viral metagenomic analysis of the liver of a black headed python (Aspidites melanocephalus) euthanized for a proliferative spinal lesion of unknown etiology yielded the first characterized genome of a reptile-infecting circovirus (black-headed python circovirus or BhPyCV). BhPyCV-specific in situ hybridization (ISH) showed that viral nucleic acids were strongly expressed in the intestinal lining and mucosa and multifocally in the liver. To investigate the presence of this virus in other snakes and its possible pathogenicity, 17 snakes in the python family with spinal disease were screened with ISH yielding a second BhP positive in intestinal tissue, and a Boelen's python (Morelia boeleni) positive in the liver. BhPyCV specific PCR was used to screen available frozen tissues from 13 of these pythons, four additional deceased pythons with and without spinal disease, and fecal samples from 37 live snakes of multiple species with unknown disease status. PCR detected multiple positive tissues in both of the ISH positive BhP and in the feces of another two live BhP and two live annulated tree boas (Corallus annulatus). Preliminary analysis indicates this circovirus can infect BhPs where it was found in 4/5 BhPs tested (2/2 with spinal disease, 2/3 live with unknown status), Boelen's python (1/2 with spinal disease), and annulated tree boa (2/6 live with unknown status) but was not detected in other python species with the same spinal lesions. This circovirus' causal or contributory role in spinal disease remains speculative and not well supported by these initial data.

Stress response protein REDD1 promotes diabetes-induced retinal inflammation by sustaining canonical NF-κB signaling

The Journal of biological chemistry

2022 Oct 26

Sunilkumar, S;Toro, AL;McCurry, CF;VanCleave, AM;Stevens, SA;Miller, WP;Kimball, SR;Dennis, MD;
PMID: 36309088 | DOI: 10.1016/j.jbc.2022.102638

Inflammation contributes to the progression of retinal pathology caused by diabetes. Here, we investigated a role for the stress response protein regulated in development and DNA damage response 1 (REDD1) in the development of retinal inflammation. Increased REDD1 expression was observed in the retina of mice after 16-weeks of streptozotocin (STZ)-induced diabetes, and REDD1 was essential for diabetes-induced pro-inflammatory cytokine expression. In human retinal MIO-M1 Müller cell cultures, REDD1 deletion prevented increased pro-inflammatory cytokine expression in response to hyperglycemic conditions. REDD1 deletion promoted nuclear factor erythroid-2-related factor 2 (Nrf2) hyperactivation; however, Nrf2 was not required for reduced inflammatory cytokine expression in REDD1-deficient cells. Rather, REDD1 enhanced inflammatory cytokine expression by promoting activation of nuclear transcription factor κB (NF-κB). In wild-type cells exposed to tumor necrosis factor α (TNFα), inflammatory cytokine expression was increased in coordination with activating transcription factor 4 (ATF4)-dependent REDD1 expression and sustained activation of NF-κB. In both Müller cell cultures exposed to TNFα and in the retina of STZ-diabetic mice, REDD1 deletion promoted inhibitor of κB (I-κB) expression and reduced NF-κB DNA-binding activity. We found that REDD1 acted upstream of I-κB by enhancing both K63-ubiquitination and auto-phosphorylation of I-κB kinase (IKK) complex. In contrast with STZ-diabetic REDD1+/+ mice, IKK complex autophosphorylation and macrophage infiltration were not observed in the retina of STZ-diabetic REDD1-/- mice. The findings provide new insight into how diabetes promotes retinal inflammation and support a model wherein REDD1 sustains activation of canonical NF-κB signaling.
Tbx2 is a master regulator of inner versus outer hair cell differentiation

Nature

2022 May 01

García-Añoveros, J;Clancy, JC;Foo, CZ;García-Gómez, I;Zhou, Y;Homma, K;Cheatham, MA;Duggan, A;
PMID: 35508658 | DOI: 10.1038/s41586-022-04668-3

The cochlea uses two types of mechanosensory cell to detect sounds. A single row of inner hair cells (IHCs) synapse onto neurons to transmit sensory information to the brain, and three rows of outer hair cells (OHCs) selectively amplify auditory inputs1. So far, two transcription factors have been implicated in the specific differentiation of OHCs, whereas, to our knowledge, none has been identified in the differentiation of IHCs2-4. One such transcription factor for OHCs, INSM1, acts during a crucial embryonic period to consolidate the OHC fate, preventing OHCs from transdifferentiating into IHCs2. In the absence of INSM1, embryonic OHCs misexpress a core set of IHC-specific genes, which we predict are involved in IHC differentiation. Here we find that one of these genes, Tbx2, is a master regulator of IHC versus OHC differentiation in mice. Ablation of Tbx2 in embryonic IHCs results in their development as OHCs, expressing early OHC markers such as Insm1 and eventually becoming completely mature OHCs in the position of IHCs. Furthermore, Tbx2 is epistatic to Insm1: in the absence of both genes, cochleae generate only OHCs, which suggests that TBX2 is necessary for the abnormal transdifferentiation of INSM1-deficient OHCs into IHCs, as well as for normal IHC differentiation. Ablation of Tbx2 in postnatal, largely differentiated IHCs makes them transdifferentiate directly into OHCs, replacing IHC features with those of mature and not embryonic OHCs. Finally, ectopic expression of Tbx2 in OHCs results in their transdifferentiation into IHCs. Hence, Tbx2 is both necessary and sufficient to make IHCs distinct from OHCs and maintain this difference throughout development.
Nidovirus-Associated Proliferative Pneumonia in the Green Tree Python (Morelia viridis).

J Virol.

2017 Aug 09

Dervas E, Hepojoki J, Laimbacher A, Romero-Palomo F, Jelinek C, Keller S, Smura T, Hepojoki S, Kipar A, Hetzel U.
PMID: 28794044 | DOI: 10.1128/JVI.00718-17

In 2014 we observed a noticeable increase in sudden deaths of green tree pythons (Morelia viridis). Pathological examination revealed accumulation of mucoid material within airways and lung, associated with enlargement of the entire lung. We performed full necropsy and histological examination on 12 affected green tree pythons from 7 different breeders to characterise the pathogenesis of this "mucinous" pneumonia. By histology we could show a marked hyperplasia of the airway epithelium and of faveolar type II pneumocytes. Since routine microbiological tests failed to identify a causative agent, we studied lung samples of a few diseased snakes by next-generation sequencing (NGS). From the NGS data we could assemble a piece of RNA genome <85% identical to nidoviruses previously identified in ball pythons and Indian pythons. We then employed RT-PCR to demonstrate the presence of the novel nidovirus in all diseased snakes. To attempt virus isolation, we established primary cell cultures of Morelia viridis liver and brain, which we inoculated with lung homogenates of infected individuals. Ultrastructural examination of concentrated cell culture supernatants showed the presence of nidovirus particles, and subsequent NGS analysis yielded the full genome of the novel virus, Morelia viridis nidovirus (MVNV). We then generated an antibody against MVNV nucleoprotein, which we used alongside RNA in situ hybridisation to demonstrate viral antigen and RNA in the affected lungs. This suggests that in natural infection MVNV damages the respiratory tract epithelium which then results in epithelial hyperplasia, most likely as an exaggerated regenerative attempt in association with increased epithelial turnover.Importance Fairly recently novel nidoviruses associated with severe respiratory disease were identified in ball pythons and Indian pythons. Herein we report isolation and identification of a further nidovirus from green tree pythons (Morelia viridis) with fatal pneumonia. We thoroughly characterize the pathological changes in the infected individuals, and show that nidovirus infection is associated with marked epithelial proliferation in the respiratory tract. We speculate that this and the associated excess mucus production can lead to the animals' death, by inhibitingthe normal gas exchange in the lung. The virus was predominantly detected in the respiratory tract, which renders transmission via the respiratory route likely. Nidoviruses cause sudden outbreaks with high mortality in breeding collections, most affected snakes die without prior clinical signs. These findings, together with those of other groups, indicate that nidoviruses are a likely cause of severe pneumonia in pythons.

Detection of Rift Valley Fever Virus RNA in Formalin-Fixed Mosquitoes by In Situ Hybridization (RNAscope™)

Viruses

2021 Jun 05

Lumley, S;Hunter, L;Emery, K;Hewson, R;Fooks, AR;Horton, DL;Johnson, N;
PMID: 34198809 | DOI: 10.3390/v13061079

Rift Valley fever virus (RVFV) causes a zoonotic mosquito-borne haemorrhagic disease that emerges to produce rapid large-scale outbreaks in livestock within sub-Saharan Africa. A range of mosquito species in Africa have been shown to transmit RVFV, and recent studies have assessed whether temperate mosquito species are also capable of transmission. In order to support vector competence studies, the ability to visualize virus localization in mosquito cells and tissue would enhance the understanding of the infection process within the mosquito body. Here, the application of in situ hybridization utilizing RNAscope to detect RVFV infection within the mosquito species, Culex pipiens, derived from the United Kingdom was demonstrated. Extensive RVFV replication was detected in many tissues of the mosquito with the notable exception of the interior of ovarian follicles.
The expression of fgfr3 in the zebrafish head

Gene Expr Patterns.

2018 Apr 06

Ledwon JK, Turin SY, Gosain AK, Topczewska JM.
PMID: 29630949 | DOI: 10.1016/j.gep.2018.04.002

Fibroblast growth factor (FGF) signaling is essential for many developmental processes and plays a pivotal role in skeletal homeostasis, regeneration and wound healing. FGF signals through one of five tyrosine kinase receptors: Fgfr1a, -1b, -2, -3, -4. To characterize the expression of zebrafish fgfr3 from the larval stage to adulthood, we used RNAscope in situ hybridization on paraffin sections of the zebrafish head. Our study revealed spatial and temporal distribution of fgfr3 transcript in chondrocytes of the head cartilages, osteoblasts involved in bone formation, ventricular zone of the brain, undifferentiated mesenchymal cells of the skin, and lens epithelium of the eye. In general, the expression pattern of zebrafish fgfr3 is similar to the expression observed in higher vertebrates.

Pages

  • « first
  • ‹ previous
  • …
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?