Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (695)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • SARS-CoV-2 (28) Apply SARS-CoV-2 filter
  • Lgr5 (26) Apply Lgr5 filter
  • Axin2 (24) Apply Axin2 filter
  • ZIKV (20) Apply ZIKV filter
  • V-nCoV2019-S (11) Apply V-nCoV2019-S filter
  • GLI1 (9) Apply GLI1 filter
  • Wnt5a (8) Apply Wnt5a filter
  • Bmp4 (7) Apply Bmp4 filter
  • HIV (7) Apply HIV filter
  • Wnt10a (6) Apply Wnt10a filter
  • Wnt10b (6) Apply Wnt10b filter
  • Wnt7b (6) Apply Wnt7b filter
  • COL1A1 (6) Apply COL1A1 filter
  • Dkk1 (6) Apply Dkk1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • Wnt3a (6) Apply Wnt3a filter
  • TGFB1 (5) Apply TGFB1 filter
  • Wnt1 (5) Apply Wnt1 filter
  • Wnt4 (5) Apply Wnt4 filter
  • Ptch1 (5) Apply Ptch1 filter
  • FGFR2 (5) Apply FGFR2 filter
  • Wnt2b (5) Apply Wnt2b filter
  • Wnt5b (5) Apply Wnt5b filter
  • Vegfa (5) Apply Vegfa filter
  • IL-10 (5) Apply IL-10 filter
  • Bmp2 (5) Apply Bmp2 filter
  • WNT2 (5) Apply WNT2 filter
  • Sfrp2 (5) Apply Sfrp2 filter
  • Wnt3 (5) Apply Wnt3 filter
  • OLFM4 (5) Apply OLFM4 filter
  • SARS-CoV-2  (5) Apply SARS-CoV-2  filter
  • Dkk3 (4) Apply Dkk3 filter
  • Wnt16 (4) Apply Wnt16 filter
  • Wnt7a (4) Apply Wnt7a filter
  • Fgfr3 (4) Apply Fgfr3 filter
  • Sox9 (4) Apply Sox9 filter
  • IL17A (4) Apply IL17A filter
  • FGFR1 (4) Apply FGFR1 filter
  • Wnt11 (4) Apply Wnt11 filter
  • Wnt8a (4) Apply Wnt8a filter
  • Wnt8b (4) Apply Wnt8b filter
  • Wnt9a (4) Apply Wnt9a filter
  • Wnt9b (4) Apply Wnt9b filter
  • SHH (4) Apply SHH filter
  • Col2a1 (4) Apply Col2a1 filter
  • CXCL12 (4) Apply CXCL12 filter
  • Adamts18 (4) Apply Adamts18 filter
  • Ackr2 (4) Apply Ackr2 filter
  • EBOV (4) Apply EBOV filter
  • Wnt6 (3) Apply Wnt6 filter

Product

  • (-) Remove RNAscope 2.5 HD Red assay filter RNAscope 2.5 HD Red assay (695)

Research area

  • Cancer (134) Apply Cancer filter
  • Neuroscience (106) Apply Neuroscience filter
  • Other (95) Apply Other filter
  • Infectious Disease (87) Apply Infectious Disease filter
  • Inflammation (69) Apply Inflammation filter
  • Infectious (50) Apply Infectious filter
  • Development (49) Apply Development filter
  • Covid (48) Apply Covid filter
  • Stem Cells (34) Apply Stem Cells filter
  • lncRNA (13) Apply lncRNA filter
  • Developmental (12) Apply Developmental filter
  • Immunotherapy (11) Apply Immunotherapy filter
  • HIV (8) Apply HIV filter
  • HPV (8) Apply HPV filter
  • diabetes (6) Apply diabetes filter
  • Endocrinology (6) Apply Endocrinology filter
  • LncRNAs (6) Apply LncRNAs filter
  • Metabolism (6) Apply Metabolism filter
  • Other: Zoological Disease (6) Apply Other: Zoological Disease filter
  • Skin (5) Apply Skin filter
  • Stem cell (5) Apply Stem cell filter
  • Teeth (4) Apply Teeth filter
  • Aging (3) Apply Aging filter
  • CGT (3) Apply CGT filter
  • Eyes (3) Apply Eyes filter
  • Kidney (3) Apply Kidney filter
  • Other: Heart (3) Apply Other: Heart filter
  • Other: Lung (3) Apply Other: Lung filter
  • Other: Skin (3) Apply Other: Skin filter
  • Other: Veterinary Science (3) Apply Other: Veterinary Science filter
  • Reproduction (3) Apply Reproduction filter
  • Vaccine (3) Apply Vaccine filter
  • Vaccines (3) Apply Vaccines filter
  • Virology (3) Apply Virology filter
  • Bone (2) Apply Bone filter
  • Fibrosis (2) Apply Fibrosis filter
  • Infectious Disease: E. coli (2) Apply Infectious Disease: E. coli filter
  • Infectious Disease: Ebola virus disease (2) Apply Infectious Disease: Ebola virus disease filter
  • Lung (2) Apply Lung filter
  • osteoarthritis (2) Apply osteoarthritis filter
  • other: Aging (2) Apply other: Aging filter
  • Other: Bone (2) Apply Other: Bone filter
  • Other: Methods (2) Apply Other: Methods filter
  • Other: Poultry science (2) Apply Other: Poultry science filter
  • Pathophysiology (2) Apply Pathophysiology filter
  • Sex Differences (2) Apply Sex Differences filter
  • Signalling (2) Apply Signalling filter
  • therapeutics (2) Apply therapeutics filter
  • Vet Medicine (2) Apply Vet Medicine filter
  • Veterinary Science (2) Apply Veterinary Science filter

Category

  • Publications (695) Apply Publications filter
Localization of cells expressing SGLT1 mRNA in the yolk sac and small intestine of broilers

Poultry Science

2018 Aug 01

Zhang H, Li H, Kidrick J, Wong EA.
PMID: - | DOI: 10.3382/ps/pey343

The uptake of glucose is mediated mainly by the sodium-glucose cotransporter, SGLT1. Previous studies using quantitative PCR showed that SGLT1 mRNA was induced in the yolk sac and in the small intestine prior to hatch. However, PCR analysis did not allow for the localization of cells expressing SGLT1 mRNA. The objective of this study was to use in situ hybridization to identify cells in the yolk sac and small intestine that expressed SGLT1 mRNA during the transition from late embryogenesis to early post-hatch. Expression of SGLT1 mRNA in yolk sac epithelial cells was low from embryonic d 11 to 17, peaked at embryonic d 19, and declined at day of hatch. In the small intestine, cells expressing SGLT1 mRNA were present not only along the intestinal villi but also in the crypts. There was greater expression of SGLT1 mRNA in the intestinal epithelial cells that line the villus than in the olfactomedin 4-expressing stem cells located in the crypts. The latter result suggests that stem cells have the ability to import glucose. Expression of SGLT1 mRNA in the intestine increased from embryonic d 19 to day of hatch and then maintained a high level of expression from d 1 to d 7 post-hatch. For both the yolk sac and small intestine, the temporal pattern of SGLT1 mRNA expression detected by in situ hybridization was consistent with the pattern revealed by PCR.

Synaptic reorganization response in the cochlear nucleus following intense noise exposure.

Neuroscience. 2018 Dec 26.

2018 Dec 26

Manohar S, Ramchander PV, Salvi R, Seigel GM.
PMID: 30593923 | DOI: 10.1016/j.neuroscience.2018.12.023

The cochlear nucleus, located in the brainstem, receives its afferent auditory input exclusively from the auditory nerve fibers of the ipsilateral cochlea. Noise-induced neurodegenerative changes occurring in the auditory nerve stimulate a cascade of neuroplastic changes in the cochlear nucleus resulting in major changes in synaptic structure and function. To identify some of the key molecular mechanisms mediating this synaptic reorganization, we unilaterally exposed rats to a high intensity noise that caused significant hearing loss and then measured the resulting changes in a synaptic plasticity gene array targeting neurogenesis and synaptic reorganization. We compared the gene expression patterns in the dorsal cochlear nucleus (DCN) and ventral cochlear nucleus (VCN) on the noise-exposed side versus the unexposed side using a PCR gene array at 2 d (early) and 28 d (late) post-exposure. We discovered a number of differentially-expressed genes, particularly those related to synaptogenesis and regeneration. Significant gene expression changes occurred more frequently in the VCN than the DCN and more changes were seen at 28 d versus 2 d post-exposure. We confirmed the PCR findings by in situ hybridization for Brain-derived neurotrophic factor (Bdnf), Homer-1, as well as the glutamate NMDA receptor Grin1, all involved in neurogenesis and plasticity. These results suggest that Bdnf, Homer-1 and Grin1 play important roles in synaptic remodeling and homeostasis in the cochlear nucleus following severe noise-induced afferent degeneration.
Up-Regulation of Activating Transcription Factor 3 in Human Fibroblasts Inhibits Melanoma Cell Growth and Migration Through a Paracrine Pathway

Front Oncol

2020 Apr 21

Zu T, Wen J, Xu L, Li H, Mi J, Li H, Brakebusch C, Fisher DE, Wu X
PMID: 32373541 | DOI: 10.3389/fonc.2020.00624

The treatment of melanoma has remained a difficult challenge. Targeting the tumor stroma has recently attracted attention for developing novel strategies for melanoma therapy. Activating transcription factor 3 (ATF3) plays a crucial role in regulating tumorigenesis and development, but whether the expression of ATF3 in human dermal fibroblasts (HDFs) can affect melanoma development hasn't been studied. Our results show that ATF3 expression is downregulated in stromal cells of human melanoma. HDFs expressing high levels of ATF3 suppressed the growth and migration of melanoma cells in association with downregulation of different cytokines including IL-6 in vitro. In vivo, HDFs with high ATF3 expression reduced tumor formation. Adding recombinant IL-6 to melanoma cells reversed those in vitro and in vivo effects, suggesting that ATF3 expression by HDFs regulates melanoma progression through the IL-6/STAT3 pathway. More importantly, HDFs pretreated with cyclosporine A or phenformin to induce ATF3 expression inhibited melanoma cell growth in vitro and in vivo. In summary, our study reveals that ATF3 suppresses human melanoma growth and that inducing the expression of ATF3 in HDFs can inhibit melanoma growth, a new potential melanoma therapeutic approach
Escherichia coli-associated follicular cystitis in dogs: Clinical and pathologic characterization

Journal of veterinary internal medicine

2023 May 08

Viitanen, SJ;Tuomisto, L;Salonen, N;Eskola, K;Kegler, K;
PMID: 37154220 | DOI: 10.1111/jvim.16719

Follicular cystitis is an uncommon inflammatory change in the urinary bladder wall characterized by the formation of tertiary lymphoid structures (TLSs) in the submucosa.To characterize clinical and pathologic features of follicular cystitis in dogs and to explore in situ distribution and possible role of Escherichia coli as an associated cause.Eight dogs diagnosed with follicular cystitis and 2 control dogs.Retrospective descriptive study. Dogs diagnosed with follicular cystitis (macroscopic follicular lesions in the urinary bladder mucosa and histopathologic detection of TLSs in bladder wall biopsies) were identified from medical records. Paraffin embedded bladder wall biopsies were subject to in situ hybridization for E. coli 16SrRNA identification.Follicular cystitis was diagnosed in large breed (median weight 24.9 kg, interquartile range [IQR] 18.8-35.4 kg) female dogs with a history of chronic recurrent urinary tract infections (UTIs; median duration of clinical signs 7 months, IQR 3-17 months; median number of previous UTIs 5, IQR 4-6). Positive E. coli 16SrRNA signal was detected within developing, immature and mature TLSs in 7/8 dogs, through submucosal stroma in 8/8 dogs and within the urothelium in 3/8 dogs.Chronic inflammation associated with an intramural E. coli infection in the urinary bladder wall represents a possible triggering factor for the development of follicular cystitis.
Sine oculis homeobox homolog 1 (Six1) plays a critical role in pulmonary fibrosis

JCI insight

2022 Apr 14

Wilson, C;Mertens, TC;Shivshankar, P;Bi, W;Collum, SD;Wareing, N;Ko, J;Weng, T;Naikawadi, RP;Wolters, PJ;Maire, P;Jyothula, SS;Thandavarayan, RA;Ren, D;Elrod, ND;Wagner, EJ;Huang, HJ;Dickey, BF;Ford, HL;Karmouty-Quintana, H;
PMID: 35420997 | DOI: 10.1172/jci.insight.142984

Idiopathic pulmonary fibrosis (IPF) is a fatal disease with limited treatment options. The role of the developmental transcription factor Sine Oculis homeobox homolog 1 (SIX1) in the pathophysiology of lung fibrosis is not known. IPF lung tissue samples and IPF-derived alveolar type II cells (AT2) showed a significant increase in SIX1 mRNA and protein levels, and the SIX1 transcriptional co-activators EYA1 and EYA2 were elevated. Six1 was also upregulated in bleomycin (BLM)-treated mice and in a model of spontaneous lung fibrosis driven by deletion of Telomeric Repeat Binding Factor 1 (Trf1) in AT2 cells. Conditional deletion of Six1 in AT2 cells prevented or halted BLM-induced lung fibrosis as measured by a significant reduction in histological burden of fibrosis, reduced fibrotic mediator expression and improved lung function. These effects were associated with increased macrophage migration inhibitory factor (MIF) in lung epithelial cells in vivo following SIX1 overexpression in BLM-induced fibrosis. A MIF promoter-driven luciferase assay demonstrated direct binding of Six1 to the 5'-TCAGG-3' consensus sequence of the MIF promoter, identifying a likely mechanism of SIX1-driven MIF expression in the pathogenesis of lung fibrosis, and providing a novel pathway for targeting in IPF therapy.
Lizard Blastema Organoid Model Recapitulates Regenerated Tail Chondrogenesis

Journal of developmental biology

2022 Feb 10

Vonk, AC;Hasel-Kolossa, SC;Lopez, GA;Hudnall, ML;Gamble, DJ;Lozito, TP;
PMID: 35225965 | DOI: 10.3390/jdb10010012

(1) Background: Lizard tail regeneration provides a unique model of blastema-based tissue regeneration for large-scale appendage replacement in amniotes. Green anole lizard (Anolis carolinensis) blastemas contain fibroblastic connective tissue cells (FCTCs), which respond to hedgehog signaling to create cartilage in vivo. However, an in vitro model of the blastema has not previously been achieved in culture. (2) Methods: By testing two adapted tissue dissociation protocols and two optimized media formulations, lizard tail FCTCs were pelleted in vitro and grown in a micromass blastema organoid culture. Pellets were analyzed by histology and in situ hybridization for FCTC and cartilage markers alongside staged original and regenerating lizard tails. (3) Results: Using an optimized serum-free media and a trypsin- and collagenase II-based dissociation protocol, micromass blastema organoids were formed. Organoid cultures expressed FCTC marker CDH11 and produced cartilage in response to hedgehog signaling in vitro, mimicking in vivo blastema and tail regeneration. (4) Conclusions: Lizard tail blastema regeneration can be modeled in vitro using micromass organoid culture, recapitulating in vivo FCTC marker expression patterns and chondrogenic potential.
Ribonucleic Acid In Situ Hybridization Is a More Sensitive Method Than Immunohistochemistry in Detection of Thyroid Transcription Factor 1 and Napsin A Expression in Lung Adenocarcinomas.

Arch Pathol Lab Med.

2016 Apr 01

Shi J, Liu H, Ma XJ, Chen Z, He MX, Luo Y, Lin F1.
PMID: 27028392 | DOI: 10.5858/arpa.2014-0644-OA.

Abstract

CONTEXT:

-TTF-1 and napsin A immunomarkers have a crucial role in differentiating lung adenocarcinoma from lung squamous cell carcinoma and in identifying a primary lung adenocarcinoma when working on a tumor of unknown origin.

OBJECTIVES:

-To investigate the diagnostic sensitivity of ribonucleic acid in situ hybridization (RNAscope) in the detection of expression of these biomarkers in lung adenocarcinomas and to compare RNAscope to immunohistochemical techniques.

DESIGN:

-Both RNAscope and the immunohistochemical assays for TTF-1 and napsin A were performed on tissue microarray sections containing 80 lung adenocarcinomas and 80 lung squamous cell carcinomas. The RNAscope assay for both TTF-1 and napsin A was also performed on 220 adenocarcinomas from various organs.

RESULTS:

-The RNAscope assay for TTF-1 gave positive results in 92.5% (74 of 80) of the lung adenocarcinomas; in contrast, immunohistochemistry gave positive results in 82.5% (66 of 80) of those cases. The RNAscope assay for napsin A gave positive results in 90% (72 of 80) of lung adenocarcinomas; immunohistochemistry results were positive in 77.5% (62 of 80) of those cases. Napsin A expression was not seen in lung squamous cell carcinomas by either method. In contrast, TTF-1 expression was seen in 3.8% (3 of 80) (1(+)) and 10% (8 of 80) (1(+)) of the squamous cell carcinomas by immunochemistry and the RNAscope, respectively. All nonpulmonary adenocarcinoma results were negative for TTF-1 by the RNAscope assay.

CONCLUSIONS:

-Preliminary data suggest that RNAscope is superior to immunohistochemistry in detecting TTF-1 and napsin A expression in primary lung adenocarcinomas. Therefore, performing an RNAscope assay may be considered for both TTF-1(-) and napsin A(-) cases with a clinical suspicion of lung adenocarcinoma. The TTF-1 results should be interpreted with caution because a small percentage of squamous cell carcinomas can be focally positive by either assay.

Cutaneous lesions in psoriatic arthritis are enriched in chemokine transcriptomic pathways

Arthritis research & therapy

2023 May 02

Johnsson, H;Cole, J;Siebert, S;McInnes, IB;Graham, G;
PMID: 37131254 | DOI: 10.1186/s13075-023-03034-6

Skin from people with psoriasis has been extensively studied and is assumed to be identical to skin from those with psoriatic arthritis (PsA). Chemokines and the CC chemokine scavenger receptor ACKR2 are upregulated in uninvolved psoriasis. ACKR2 has been proposed as a regulator of cutaneous inflammation in psoriasis. The aim of this study was to compare the transcriptome of PsA skin to healthy control (HC) skin and evaluate ACKR2 expression in PsA skin.Full-thickness skin biopsies from HC, lesional and uninvolved skin from participants with PsA were sequenced on NovaSeq 6000. Findings were validated using qPCR and RNAscope.Nine HC and nine paired PsA skin samples were sequenced. PsA uninvolved skin was transcriptionally similar to HC skin, and lesional PsA skin was enriched in epidermal and inflammatory genes. Lesional PsA skin was enriched in chemokine-mediated signalling pathways, but uninvolved skin was not. ACKR2 was upregulated in lesional PsA skin but had unchanged expression in uninvolved compared with HC skin. The expression of ACKR2 was confirmed by qPCR, and RNAscope demonstrated strong expression of ACKR2 in the suprabasal layer of the epidermis in PsA lesions.Chemokines and their receptors are upregulated in lesional PsA skin but relatively unchanged in uninvolved PsA skin. In contrast to previous psoriasis studies, ACKR2 was not upregulated in uninvolved PsA skin. Further understanding of the chemokine system in PsA may help to explain why inflammation spreads from the skin to the joints in some people with psoriasis.
Phosphorylated Mechanistic Target of Rapamycin (p-mTOR) and Noncoding RNA Expression in Follicular and Hürthle Cell Thyroid Neoplasm

Endocr Pathol.

2017 Jun 28

Covach A, Patel S, Hardin H, Lloyd RV.
PMID: 28660408 | DOI: 10.1007/s12022-017-9490-7

Oncocytic (Hürthle cell) and follicular neoplasms are related thyroid tumors with distinct molecular profiles. Diagnostic criteria separating adenomas and carcinomas for these two types of neoplasms are similar, but there may be some differences in the biological behavior of Hürthle cell and follicular carcinomas. Recent studies have shown that noncoding RNAs may have diagnostic and prognostic utility in separating benign and malignant Hürthle cell and follicular neoplasms. In this study, we examined expression of various noncoding RNAs including metastasis associated lung adenocarcinoma transcript 1 (MALAT1) and miR-RNA-885-5p (miR-885) in distinguishing between benign and malignant neoplasms. In addition, the expression of phosphorylated mechanistic receptor of rapamycin (p-mTOR) was also analyzed in these two groups of tumors. Tissue microarrays (TMAs) with archived tissue samples were analyzed using in situ hybridization (ISH) for MALAT1 and miR-885 and immunohistochemistry (IHC) for p-mTOR. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was also performed on a subset of the cases.MALAT1 and miR-885 were increased in all neoplastic groups compared to the normal thyroid tissues (p < 0.05). MALAT1 was more highly expressed in HCCs compared to FTCs, although the differences were not statistically significant (p = 0.06). MiR-885 was expressed at similar levels in FTCs and HCCs. P-mTOR protein was more highly expressed in FTCs than in HCCs (p<0.001). qRT-PCR analysis of noncoding RNAs supported the ISH findings. These results indicate that the noncoding RNAs MALAT1 and miR-885 show increased expression in neoplastic follicular and Hürthle cell thyroid neoplasms compared to normal thyroid tissues. P-mTOR was most highly expressed in FTC but was also increased in HCC, suggesting that drugs targeting this pathway may be useful for treatment of tumors unresponsive to conventional therapies.

Stromal immunoglobulin κC expression is associated with initiation of breast cancer in TA2 mice and human breast cancer.

Cancer Sci.

2018 May 23

Zhang S, Fei F, Wang H, Gu Y, Li C, Wang X, Zhao Y, Li Y.
PMID: 29683229 | DOI: 10.1111/cas.13620

The initiation of spontaneous breast cancer (SBC) in Tientsin Albino 2 (TA2) mice is related to mouse mammary tumor virus (MMTV) infection, and MMTV amplification is hormonally regulated. To explore the insertion site of MMTVLTR in TA2 mouse genome, reverse PCR and nested PCR were used to amplify the unknown sequence on both sides of the MMTV-LTRSAG gene in SBC and normal breast tissue of TA2 mice. Furthermore, the clinicopathological significance of the insertion site was evaluated in 43 samples of normal breast tissue, 46 samples of breast cystic hyperplasia, 54 samples of ductal carcinoma in situ, 142 samples of primary breast cancer and 47 samples of lymph node metastatic breast cancer by RNA in situ hybridization. We confirmed that the insertion site of the MMTV-LTRSAG gene was located between Igκv2-112 and Igκv14-111 in chromosome 6 of TA2 mouse. IGκC was localized in the stromal cells of TA2 mouse with SBC and in human breast cancer tissues. Tumor cells were negative for IGκC in RNA in situ hybridization. The positive staining index of IGκC in stromal cells was the highest in lymph node metastatic breast cancer, followed by primary breast cancer, ductal carcinoma in situ, and breast cystic hyperplasia. Furthermore, the positive staining index of IGκC was related to the expression of ER, PR, HER2 and Ki-67. Our findings showed that stromal IGκC expression was associated with the initiation of SBC in TA2 mice. IGκC may be a high-risk factor for the initiation and progression of human breast cancer.

Expression of ABCA4 in the retinal pigment epithelium and its implications for Stargardt macular degeneration

Proc Natl Acad Sci U S A.

2018 Nov 05

Lenis TL, Hu J, Ng SY, Jiang Z, Sarfare S, Lloyd MB, Esposito NJ, Samuel W, Jaworski C, Bok D, Finnemann SC, Radeke MJ, Redmond TM, Travis GH, Radu RA.
PMID: 30397118 | DOI: 10.1073/pnas.1802519115

Recessive Stargardt disease (STGD1) is an inherited blinding disorder caused by mutations in the Abca4 gene. ABCA4 is a flippase in photoreceptor outer segments (OS) that translocates retinaldehyde conjugated to phosphatidylethanolamine across OS disc membranes. Loss of ABCA4 in Abca4 -/- mice and STGD1 patients causes buildup of lipofuscin in the retinal pigment epithelium (RPE) and degeneration of photoreceptors, leading to blindness. No effective treatment currently exists for STGD1. Here we show by several approaches that ABCA4 is additionally expressed in RPE cells. (i) By in situ hybridization analysis and by RNA-sequencing analysis, we show the Abca4 mRNA is expressed in human and mouse RPE cells. (ii) By quantitative immunoblotting, we show that the level of ABCA4 protein in homogenates of wild-type mouse RPE is about 1% of the level in neural retina homogenates. (iii) ABCA4 immunofluorescence is present in RPE cells of wild-type and Mertk -/- but not Abca4 -/- mouse retina sections, where it colocalizes with endolysosomal proteins. To elucidate the role of ABCA4 in RPE cells, we generated a line of genetically modified mice that express ABCA4 in RPE cells but not in photoreceptors. Mice from this line on the Abca4 -/- background showed partial rescue of photoreceptor degeneration and decreased lipofuscin accumulation compared with nontransgenic Abca4 -/- mice. We propose that ABCA4 functions to recycle retinaldehyde released during proteolysis of rhodopsin in RPE endolysosomes following daily phagocytosis of distal photoreceptor OS. ABCA4 deficiency in the RPE may play a role in the pathogenesis of STGD1.

Sodium/(calcium + potassium) exchanger NCKX4 optimizes KLK4 activity in the enamel matrix microenvironment to regulate ECM modeling

Frontiers in physiology

2023 Feb 06

Chan, B;Cheng, IC;Rozita, J;Gorshteyn, I;Huang, Y;Shaffer, I;Chang, C;Li, W;Lytton, J;Den Besten, P;Zhang, Y;
PMID: 36814474 | DOI: 10.3389/fphys.2023.1116091

Enamel development is a process in which extracellular matrix models from a soft proteinaceous matrix to the most mineralized tissue in vertebrates. Patients with mutant NCKX4, a gene encoding a K+-dependent Na+/Ca2+-exchanger, develop a hypomineralized and hypomature enamel. How NCKX4 regulates enamel protein removal to achieve an almost protein-free enamel is unknown. We characterized the upregulation pattern of Nckx4 in the progressively differentiating enamel-forming ameloblasts by qPCR, and as well as confirmed NCKX4 protein to primarily localize at the apical surface of wild-type ruffle-ended maturation ameloblasts by immunostaining of the continuously growing mouse incisors, posing the entire developmental trajectory of enamel. In contrast to the normal mature enamel, where ECM proteins are hydrolyzed and removed, we found significant protein retention in the maturation stage of Nckx4 -/- mouse enamel. The Nckx4 -/- enamel held less Ca2+ and K+ but more Na+ than the Nckx4 +/+ enamel did, as measured by EDX. The alternating acidic and neutral pH zones at the surface of mineralizing Nckx4 +/+ enamel were replaced by a largely neutral pH matrix in the Nckx4 -/- enamel. In situ zymography revealed a reduced kallikrein-related peptidase 4 (KLK4) activity in the Nckx4 -/- enamel. We showed that KLK4 took on 90% of proteinase activity in the maturation stage of normal enamel, and that recombinant KLK4 as well as native mouse enamel KLK4 both performed less effectively in a buffer with increased [Na+] and pH, conditions found in the Nckx4 -/- developing enamel. This study, for the first time to our knowledge, provides evidence demonstrating the impaired in situ KLK4 activity in Nckx4 -/- enamel and suggests a novel function of NCKX4 in facilitating KLK4-mediated hydrolysis and removal of ECM proteins, warranting the completion of enamel matrix modeling.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?