ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Poultry Science
2018 Aug 01
Zhang H, Li H, Kidrick J, Wong EA.
PMID: - | DOI: 10.3382/ps/pey343
The uptake of glucose is mediated mainly by the sodium-glucose cotransporter, SGLT1. Previous studies using quantitative PCR showed that SGLT1 mRNA was induced in the yolk sac and in the small intestine prior to hatch. However, PCR analysis did not allow for the localization of cells expressing SGLT1 mRNA. The objective of this study was to use in situ hybridization to identify cells in the yolk sac and small intestine that expressed SGLT1 mRNA during the transition from late embryogenesis to early post-hatch. Expression of SGLT1 mRNA in yolk sac epithelial cells was low from embryonic d 11 to 17, peaked at embryonic d 19, and declined at day of hatch. In the small intestine, cells expressing SGLT1 mRNA were present not only along the intestinal villi but also in the crypts. There was greater expression of SGLT1 mRNA in the intestinal epithelial cells that line the villus than in the olfactomedin 4-expressing stem cells located in the crypts. The latter result suggests that stem cells have the ability to import glucose. Expression of SGLT1 mRNA in the intestine increased from embryonic d 19 to day of hatch and then maintained a high level of expression from d 1 to d 7 post-hatch. For both the yolk sac and small intestine, the temporal pattern of SGLT1 mRNA expression detected by in situ hybridization was consistent with the pattern revealed by PCR.
Neuroscience. 2018 Dec 26.
2018 Dec 26
Manohar S, Ramchander PV, Salvi R, Seigel GM.
PMID: 30593923 | DOI: 10.1016/j.neuroscience.2018.12.023
Front Oncol
2020 Apr 21
Zu T, Wen J, Xu L, Li H, Mi J, Li H, Brakebusch C, Fisher DE, Wu X
PMID: 32373541 | DOI: 10.3389/fonc.2020.00624
Journal of veterinary internal medicine
2023 May 08
Viitanen, SJ;Tuomisto, L;Salonen, N;Eskola, K;Kegler, K;
PMID: 37154220 | DOI: 10.1111/jvim.16719
JCI insight
2022 Apr 14
Wilson, C;Mertens, TC;Shivshankar, P;Bi, W;Collum, SD;Wareing, N;Ko, J;Weng, T;Naikawadi, RP;Wolters, PJ;Maire, P;Jyothula, SS;Thandavarayan, RA;Ren, D;Elrod, ND;Wagner, EJ;Huang, HJ;Dickey, BF;Ford, HL;Karmouty-Quintana, H;
PMID: 35420997 | DOI: 10.1172/jci.insight.142984
Journal of developmental biology
2022 Feb 10
Vonk, AC;Hasel-Kolossa, SC;Lopez, GA;Hudnall, ML;Gamble, DJ;Lozito, TP;
PMID: 35225965 | DOI: 10.3390/jdb10010012
Arch Pathol Lab Med.
2016 Apr 01
Shi J, Liu H, Ma XJ, Chen Z, He MX, Luo Y, Lin F1.
PMID: 27028392 | DOI: 10.5858/arpa.2014-0644-OA.
-TTF-1 and napsin A immunomarkers have a crucial role in differentiating lung adenocarcinoma from lung squamous cell carcinoma and in identifying a primary lung adenocarcinoma when working on a tumor of unknown origin.
-To investigate the diagnostic sensitivity of ribonucleic acid in situ hybridization (RNAscope) in the detection of expression of these biomarkers in lung adenocarcinomas and to compare RNAscope to immunohistochemical techniques.
-Both RNAscope and the immunohistochemical assays for TTF-1 and napsin A were performed on tissue microarray sections containing 80 lung adenocarcinomas and 80 lung squamous cell carcinomas. The RNAscope assay for both TTF-1 and napsin A was also performed on 220 adenocarcinomas from various organs.
-The RNAscope assay for TTF-1 gave positive results in 92.5% (74 of 80) of the lung adenocarcinomas; in contrast, immunohistochemistry gave positive results in 82.5% (66 of 80) of those cases. The RNAscope assay for napsin A gave positive results in 90% (72 of 80) of lung adenocarcinomas; immunohistochemistry results were positive in 77.5% (62 of 80) of those cases. Napsin A expression was not seen in lung squamous cell carcinomas by either method. In contrast, TTF-1 expression was seen in 3.8% (3 of 80) (1(+)) and 10% (8 of 80) (1(+)) of the squamous cell carcinomas by immunochemistry and the RNAscope, respectively. All nonpulmonary adenocarcinoma results were negative for TTF-1 by the RNAscope assay.
-Preliminary data suggest that RNAscope is superior to immunohistochemistry in detecting TTF-1 and napsin A expression in primary lung adenocarcinomas. Therefore, performing an RNAscope assay may be considered for both TTF-1(-) and napsin A(-) cases with a clinical suspicion of lung adenocarcinoma. The TTF-1 results should be interpreted with caution because a small percentage of squamous cell carcinomas can be focally positive by either assay.
Arthritis research & therapy
2023 May 02
Johnsson, H;Cole, J;Siebert, S;McInnes, IB;Graham, G;
PMID: 37131254 | DOI: 10.1186/s13075-023-03034-6
Endocr Pathol.
2017 Jun 28
Covach A, Patel S, Hardin H, Lloyd RV.
PMID: 28660408 | DOI: 10.1007/s12022-017-9490-7
Oncocytic (Hürthle cell) and follicular neoplasms are related thyroid tumors with distinct molecular profiles. Diagnostic criteria separating adenomas and carcinomas for these two types of neoplasms are similar, but there may be some differences in the biological behavior of Hürthle cell and follicular carcinomas. Recent studies have shown that noncoding RNAs may have diagnostic and prognostic utility in separating benign and malignant Hürthle cell and follicular neoplasms. In this study, we examined expression of various noncoding RNAs including metastasis associated lung adenocarcinoma transcript 1 (MALAT1) and miR-RNA-885-5p (miR-885) in distinguishing between benign and malignant neoplasms. In addition, the expression of phosphorylated mechanistic receptor of rapamycin (p-mTOR) was also analyzed in these two groups of tumors. Tissue microarrays (TMAs) with archived tissue samples were analyzed using in situ hybridization (ISH) for MALAT1 and miR-885 and immunohistochemistry (IHC) for p-mTOR. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was also performed on a subset of the cases.MALAT1 and miR-885 were increased in all neoplastic groups compared to the normal thyroid tissues (p < 0.05). MALAT1 was more highly expressed in HCCs compared to FTCs, although the differences were not statistically significant (p = 0.06). MiR-885 was expressed at similar levels in FTCs and HCCs. P-mTOR protein was more highly expressed in FTCs than in HCCs (p<0.001). qRT-PCR analysis of noncoding RNAs supported the ISH findings. These results indicate that the noncoding RNAs MALAT1 and miR-885 show increased expression in neoplastic follicular and Hürthle cell thyroid neoplasms compared to normal thyroid tissues. P-mTOR was most highly expressed in FTC but was also increased in HCC, suggesting that drugs targeting this pathway may be useful for treatment of tumors unresponsive to conventional therapies.
Cancer Sci.
2018 May 23
Zhang S, Fei F, Wang H, Gu Y, Li C, Wang X, Zhao Y, Li Y.
PMID: 29683229 | DOI: 10.1111/cas.13620
The initiation of spontaneous breast cancer (SBC) in Tientsin Albino 2 (TA2) mice is related to mouse mammary tumor virus (MMTV) infection, and MMTV amplification is hormonally regulated. To explore the insertion site of MMTVLTR in TA2 mouse genome, reverse PCR and nested PCR were used to amplify the unknown sequence on both sides of the MMTV-LTRSAG gene in SBC and normal breast tissue of TA2 mice. Furthermore, the clinicopathological significance of the insertion site was evaluated in 43 samples of normal breast tissue, 46 samples of breast cystic hyperplasia, 54 samples of ductal carcinoma in situ, 142 samples of primary breast cancer and 47 samples of lymph node metastatic breast cancer by RNA in situ hybridization. We confirmed that the insertion site of the MMTV-LTRSAG gene was located between Igκv2-112 and Igκv14-111 in chromosome 6 of TA2 mouse. IGκC was localized in the stromal cells of TA2 mouse with SBC and in human breast cancer tissues. Tumor cells were negative for IGκC in RNA in situ hybridization. The positive staining index of IGκC in stromal cells was the highest in lymph node metastatic breast cancer, followed by primary breast cancer, ductal carcinoma in situ, and breast cystic hyperplasia. Furthermore, the positive staining index of IGκC was related to the expression of ER, PR, HER2 and Ki-67. Our findings showed that stromal IGκC expression was associated with the initiation of SBC in TA2 mice. IGκC may be a high-risk factor for the initiation and progression of human breast cancer.
Proc Natl Acad Sci U S A.
2018 Nov 05
Lenis TL, Hu J, Ng SY, Jiang Z, Sarfare S, Lloyd MB, Esposito NJ, Samuel W, Jaworski C, Bok D, Finnemann SC, Radeke MJ, Redmond TM, Travis GH, Radu RA.
PMID: 30397118 | DOI: 10.1073/pnas.1802519115
Recessive Stargardt disease (STGD1) is an inherited blinding disorder caused by mutations in the Abca4 gene. ABCA4 is a flippase in photoreceptor outer segments (OS) that translocates retinaldehyde conjugated to phosphatidylethanolamine across OS disc membranes. Loss of ABCA4 in Abca4 -/- mice and STGD1 patients causes buildup of lipofuscin in the retinal pigment epithelium (RPE) and degeneration of photoreceptors, leading to blindness. No effective treatment currently exists for STGD1. Here we show by several approaches that ABCA4 is additionally expressed in RPE cells. (i) By in situ hybridization analysis and by RNA-sequencing analysis, we show the Abca4 mRNA is expressed in human and mouse RPE cells. (ii) By quantitative immunoblotting, we show that the level of ABCA4 protein in homogenates of wild-type mouse RPE is about 1% of the level in neural retina homogenates. (iii) ABCA4 immunofluorescence is present in RPE cells of wild-type and Mertk -/- but not Abca4 -/- mouse retina sections, where it colocalizes with endolysosomal proteins. To elucidate the role of ABCA4 in RPE cells, we generated a line of genetically modified mice that express ABCA4 in RPE cells but not in photoreceptors. Mice from this line on the Abca4 -/- background showed partial rescue of photoreceptor degeneration and decreased lipofuscin accumulation compared with nontransgenic Abca4 -/- mice. We propose that ABCA4 functions to recycle retinaldehyde released during proteolysis of rhodopsin in RPE endolysosomes following daily phagocytosis of distal photoreceptor OS. ABCA4 deficiency in the RPE may play a role in the pathogenesis of STGD1.
Frontiers in physiology
2023 Feb 06
Chan, B;Cheng, IC;Rozita, J;Gorshteyn, I;Huang, Y;Shaffer, I;Chang, C;Li, W;Lytton, J;Den Besten, P;Zhang, Y;
PMID: 36814474 | DOI: 10.3389/fphys.2023.1116091
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com