Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (104)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • Lgr5 (7) Apply Lgr5 filter
  • TBD (7) Apply TBD filter
  • SARS-CoV-2 (6) Apply SARS-CoV-2 filter
  • V-nCoV2019-S (3) Apply V-nCoV2019-S filter
  • COL1A1 (2) Apply COL1A1 filter
  • HPV E6 / E7 (2) Apply HPV E6 / E7 filter
  • BRC1 (2) Apply BRC1 filter
  • ALDH1A1 (1) Apply ALDH1A1 filter
  • Axin2 (1) Apply Axin2 filter
  • AREG (1) Apply AREG filter
  • IL17A (1) Apply IL17A filter
  • C1qa (1) Apply C1qa filter
  • CD34 (1) Apply CD34 filter
  • Rspo3 (1) Apply Rspo3 filter
  • CD44 (1) Apply CD44 filter
  • IL12B (1) Apply IL12B filter
  • Neat1 (1) Apply Neat1 filter
  • Dkk1 (1) Apply Dkk1 filter
  • Avpr1a (1) Apply Avpr1a filter
  • COL3A1 (1) Apply COL3A1 filter
  • CXCL13 (1) Apply CXCL13 filter
  • Ifng (1) Apply Ifng filter
  • Ptch1 (1) Apply Ptch1 filter
  • PTGS2 (1) Apply PTGS2 filter
  • CD19 (1) Apply CD19 filter
  • Tnf (1) Apply Tnf filter
  • MSX2 (1) Apply MSX2 filter
  • KRT79 (1) Apply KRT79 filter
  • FMR1 (1) Apply FMR1 filter
  • FN1 (1) Apply FN1 filter
  • GATA6 (1) Apply GATA6 filter
  • GNA15 (1) Apply GNA15 filter
  • TPBG (1) Apply TPBG filter
  • GREM1 (1) Apply GREM1 filter
  • PTK7 (1) Apply PTK7 filter
  • AGRP (1) Apply AGRP filter
  • Socs3 (1) Apply Socs3 filter
  • IL13 (1) Apply IL13 filter
  • IL17F (1) Apply IL17F filter
  • IL22 (1) Apply IL22 filter
  • IL23A (1) Apply IL23A filter
  • IL4 (1) Apply IL4 filter
  • Vegfa (1) Apply Vegfa filter
  • LPAR1 (1) Apply LPAR1 filter
  • MYC (1) Apply MYC filter
  • Oxtr (1) Apply Oxtr filter
  • DPT (1) Apply DPT filter
  • Npy (1) Apply Npy filter
  • REG4 (1) Apply REG4 filter
  • Pappa (1) Apply Pappa filter

Product

  • (-) Remove RNAscope 2.5 HD Reagent Kit - BROWN filter RNAscope 2.5 HD Reagent Kit - BROWN (104)

Research area

  • Cancer (31) Apply Cancer filter
  • Covid (15) Apply Covid filter
  • Development (15) Apply Development filter
  • Infectious (11) Apply Infectious filter
  • Inflammation (9) Apply Inflammation filter
  • Neuroscience (9) Apply Neuroscience filter
  • Bone (4) Apply Bone filter
  • HPV (4) Apply HPV filter
  • Infectious Disease (4) Apply Infectious Disease filter
  • lncRNA (3) Apply lncRNA filter
  • Stem cell (3) Apply Stem cell filter
  • CGT (2) Apply CGT filter
  • diabetes (2) Apply diabetes filter
  • Fibrosis (2) Apply Fibrosis filter
  • Immunotherapy (2) Apply Immunotherapy filter
  • Other: Kidney (2) Apply Other: Kidney filter
  • Stem Cells (2) Apply Stem Cells filter
  • Aging (1) Apply Aging filter
  • B cell Failure (1) Apply B cell Failure filter
  • Cancer Stem Cells (1) Apply Cancer Stem Cells filter
  • Cell Senescence (1) Apply Cell Senescence filter
  • circRNAs (1) Apply circRNAs filter
  • Colon (1) Apply Colon filter
  • Developement (1) Apply Developement filter
  • Endocrinology (1) Apply Endocrinology filter
  • Immunotherapy: NK-Cell Therapy (1) Apply Immunotherapy: NK-Cell Therapy filter
  • Influenza A (1) Apply Influenza A filter
  • Injury (1) Apply Injury filter
  • Liver Injury (1) Apply Liver Injury filter
  • LncRNAs (1) Apply LncRNAs filter
  • Metabolism (1) Apply Metabolism filter
  • miRNAs (1) Apply miRNAs filter
  • Obesity (1) Apply Obesity filter
  • other: Aging (1) Apply other: Aging filter
  • Other: Heart (1) Apply Other: Heart filter
  • Other: Infectious Disease (1) Apply Other: Infectious Disease filter
  • Other: Metabolism (1) Apply Other: Metabolism filter
  • Other: Plant Sciences (1) Apply Other: Plant Sciences filter
  • Other: Recessive Stargardt disease (1) Apply Other: Recessive Stargardt disease filter
  • Other: Reproduction (1) Apply Other: Reproduction filter
  • Other: Reproductive Biology (1) Apply Other: Reproductive Biology filter
  • Other:Eye (1) Apply Other:Eye filter
  • pancreatic ductal adenocarcinoma (1) Apply pancreatic ductal adenocarcinoma filter
  • Reproduction (1) Apply Reproduction filter
  • Reproductive Biology (1) Apply Reproductive Biology filter
  • Sex-biased genetic programming (1) Apply Sex-biased genetic programming filter
  • thyroid hormone signaling (1) Apply thyroid hormone signaling filter
  • Tuberculosis (1) Apply Tuberculosis filter
  • Vaccines (1) Apply Vaccines filter
  • Zika Virus (1) Apply Zika Virus filter

Category

  • Publications (104) Apply Publications filter
Intrathecal AAV9/AP4M1 gene therapy for hereditary spastic paraplegia 50 shows safety and efficacy in preclinical studies

The Journal of clinical investigation

2023 Mar 23

Chen, X;Dong, T;Hu, Y;De Pace, R;Mattera, R;Eberhardt, K;Ziegler, M;Pirovolakis, T;Sahin, M;Bonifacino, JS;Ebrahimi-Fakhari, D;Gray, SJ;
PMID: 36951961 | DOI: 10.1172/JCI164575

Spastic paraplegia 50 (SPG50) is an ultrarare childhood-onset neurological disorder caused by biallelic loss-of-function variants in the AP4M1 gene. SPG50 is characterized by progressive spastic paraplegia, global developmental delay and subsequent intellectual disability, secondary microcephaly, and epilepsy. Preclinical studies evaluated an adeno-associated virus (AAV)/AP4M1 gene therapy for SPG50. In vitro studies demonstrated that transduction of patient-derived fibroblasts with AAV2/AP4M1 resulted in phenotypic rescue. To evaluate efficacy in vivo, Ap4m1 knockout mice were intrathecally (IT) injected with 5E11, 2.5E11, or 1.25E11 vg doses of AAV9/AP4M1 at postnatal day p7-10 (pre-manifesting cohorts) or p90 (early manifesting cohorts). Age- and dose-dependent effects were observed, with early intervention and higher doses achieving the best therapeutic benefits. In parallel, three toxicology studies in wild-type mice, rats, and non-human primates (NHPs) demonstrated that AAV9/AP4M1 had an acceptable safety profile up to a target human dose of 1E15 vg. Of note, similar degrees of minimal to mild dorsal root ganglia (DRG) toxicity were observed in both rats and NHPs, supporting the use of rats to monitor DRG toxicity in future IT AAV studies. These preclinical results identify an acceptably safe and efficacious dose of IT-administered AAV9/AP4M1, supporting an investigational gene transfer clinical trial to treat SPG50.
Correlation of LGR5 expression and clinicopathological features in intrahepatic cholangiocarcinoma

Pathology - Research and Practice

2022 Mar 01

Yoshizawa, T;Uehara, T;Iwaya, M;Asaka, S;Kobayashi, S;Nakajima, T;Kinugawa, Y;Nagaya, T;Kamakura, M;Shimizu, A;Kubota, K;Notake, T;Masuo, H;Hosoda, K;Sakai, H;Hayashi, H;Umemura, K;Kamachi, A;Goto, T;Tomida, H;Yamazaki, S;Ota, H;Soejima, Y;
| DOI: 10.1016/j.prp.2022.153832

Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) is a known cancer stem cell marker. However, there are no reported analyses of LGR5 mRNA expression in normal liver and liver cancer tissues. Here, we evaluated LGR5 expression by RNAscope, a newly developed RNA in situ hybridization technique, using a tissue microarray consisting of 25 samples of intrahepatic cholangiocarcinoma (ICC) selected from the medical archives at our hospital. LGR5 expression levels were divided into high and low expression groups by the five-grade scoring system, and clinicopathological features were analyzed. Low LGR5 expression was identified in some normal hepatocytes and bile duct cells. In addition, LGR5 expression was identified in all bile duct cancer samples except one case. Well-differentiated to moderately-differentiated adenocarcinoma tended to show higher LGR5 expression than poorly-differentiated adenocarcinoma (P=0.0561), and the large duct type showed significantly higher LGR5 expression levels than the small duct type (P=0.0225). Patients in the high LGR5 expression group tended to have good overall survival (OS) (P=0.0623). The Cox proportional hazard regression model revealed that the high LGR5 expression group showed independently better OS for ICC (P = 0.0285). High LGR5 expression is possibly a good prognosis factor in ICC. However, the detailed mechanism of LGR5 in this disease remains unclear, and further analysis is warranted.
Cytotoxic CD4+ T cells eliminate senescent cells by targeting cytomegalovirus antigen

Cell

2023 Mar 30

Hasegawa, T;Oka, T;Son, HG;Oliver-García, VS;Azin, M;Eisenhaure, TM;Lieb, DJ;Hacohen, N;Demehri, S;
PMID: 37001502 | DOI: 10.1016/j.cell.2023.02.033

Senescent cell accumulation has been implicated in the pathogenesis of aging-associated diseases, including cancer. The mechanism that prevents the accumulation of senescent cells in aging human organs is unclear. Here, we demonstrate that a virus-immune axis controls the senescent fibroblast accumulation in the human skin. Senescent fibroblasts increased in old skin compared with young skin. However, they did not increase with advancing age in the elderly. Increased CXCL9 and cytotoxic CD4+ T cells (CD4 CTLs) recruitment were significantly associated with reduced senescent fibroblasts in the old skin. Senescent fibroblasts expressed human leukocyte antigen class II (HLA-II) and human cytomegalovirus glycoprotein B (HCMV-gB), becoming direct CD4 CTL targets. Skin-resident CD4 CTLs eliminated HCMV-gB+ senescent fibroblasts in an HLA-II-dependent manner, and HCMV-gB activated CD4 CTLs from the human skin. Collectively, our findings demonstrate HCMV reactivation in senescent cells, which CD4 CTLs can directly eliminate through the recognition of the HCMV-gB antigen.
Cytotoxic CD4 + T Cells Eliminate Senescent Cells by Targeting Commensal Cytomegalovirus Antigen

SSRN Electronic Journal

2022 May 27

Hasegawa, T;Oka, T;Son, H;Azin, M;Eisenhaure, T;Lieb, D;Hacohen, N;Demehri, S;
| DOI: 10.2139/ssrn.4102631

Senescent cell accumulation has been implicated in the pathogenesis of aging-associated diseases including cancer. The mechanism that prevents the accumulation of senescent cells in aging human organs is unclear. Here, we demonstrate that a commensal virus-immune axis controls the senescent fibroblast accumulation in the human skin. Senescent fibroblasts increased in old compared with young skin. However, they did not increase with advancing age in elderly. Increased CXCL9 and cytotoxic CD4+ T cell (CD4 CTL) recruitment were significantly associated with reduced senescent fibroblasts in the old skin. Senescent fibroblasts expressed human leukocyte antigen class II (HLA-II) and human cytomegalovirus glycoprotein B (HCMV-gB), becoming direct CD4 CTL targets. Skin-resident CD4 CTL eliminated HCMV-gB+ senescent fibroblasts in an HLA-II-dependent manner and HCMV-gB activated CD4 CTL from the human skin. Collectively, our findings demonstrate HCMV reactivation in senescent cells, which can be directly eliminated by CD4 CTL through the recognition of the HCMV-gB antigen.
EBV+ tumors exploit tumor cell-intrinsic and-extrinsic mechanisms to produce regulatory T cell-recruiting chemokines CCL17 and CCL22

PLoS pathogens

2022 Jan 01

Jorapur, A;Marshall, LA;Jacobson, S;Xu, M;Marubayashi, S;Zibinsky, M;Hu, DX;Robles, O;Jackson, JJ;Baloche, V;Busson, P;Wustrow, D;Brockstedt, DG;Talay, O;Kassner, PD;Cutler, G;
PMID: 35025968 | DOI: 10.1371/journal.ppat.1010200

The Epstein-Barr Virus (EBV) is involved in the etiology of multiple hematologic and epithelial human cancers. EBV+ tumors employ multiple immune escape mechanisms, including the recruitment of immunosuppressive regulatory T cells (Treg). Here, we show some EBV+ tumor cells express high levels of the chemokines CCL17 and CCL22 both in vitro and in vivo and that this expression mirrors the expression levels of expression of the EBV LMP1 gene in vitro. Patient samples from lymphoblastic (Hodgkin lymphoma) and epithelial (nasopharyngeal carcinoma; NPC) EBV+ tumors revealed CCL17 and CCL22 expression of both tumor cell-intrinsic and -extrinsic origin, depending on tumor type. NPCs grown as mouse xenografts likewise showed both mechanisms of chemokine production. Single cell RNA-sequencing revealed in vivo tumor cell-intrinsic CCL17 and CCL22 expression combined with expression from infiltrating classical resident and migratory dendritic cells in a CT26 colon cancer mouse tumor engineered to express LMP1. These data suggest that EBV-driven tumors employ dual mechanisms for CCL17 and CCL22 production. Importantly, both in vitro and in vivo Treg migration was effectively blocked by a novel, small molecule antagonist of CCR4, CCR4-351. Antagonism of the CCR4 receptor may thus be an effective means of activating the immune response against a wide spectrum of EBV+ tumors.
The noncoding MIR100HG RNA enhances the autocrine function of transforming growth factor β signaling

Oncogene

2021 May 01

Papoutsoglou, P;Rodrigues-Junior, DM;Morén, A;Bergman, A;Pontén, F;Coulouarn, C;Caja, L;Heldin, CH;Moustakas, A;
PMID: 33941855 | DOI: 10.1038/s41388-021-01803-8

Activation of the transforming growth factor β (TGFβ) pathway modulates the expression of genes involved in cell growth arrest, motility, and embryogenesis. An expression screen for long noncoding RNAs indicated that TGFβ induced mir-100-let-7a-2-mir-125b-1 cluster host gene (MIR100HG) expression in diverse cancer types, thus confirming an earlier demonstration of TGFβ-mediated transcriptional induction of MIR100HG in pancreatic adenocarcinoma. MIR100HG depletion attenuated TGFβ signaling, expression of TGFβ-target genes, and TGFβ-mediated cell cycle arrest. Moreover, MIR100HG silencing inhibited both normal and cancer cell motility and enhanced the cytotoxicity of cytostatic drugs. MIR100HG overexpression had an inverse impact on TGFβ signaling responses. Screening for downstream effectors of MIR100HG identified the ligand TGFβ1. MIR100HG and TGFB1 mRNA formed ribonucleoprotein complexes with the RNA-binding protein HuR, promoting TGFβ1 cytokine secretion. In addition, TGFβ regulated let-7a-2-3p, miR-125b-5p, and miR-125b-1-3p expression, all encoded by MIR100HG intron-3. Certain intron-3 miRNAs may be involved in TGFβ/SMAD-mediated responses (let-7a-2-3p) and others (miR-100, miR-125b) in resistance to cytotoxic drugs mediated by MIR100HG. In support of a model whereby TGFβ induces MIR100HG, which then enhances TGFβ1 secretion, analysis of human carcinomas showed that MIR100HG expression correlated with expression of TGFB1 and its downstream extracellular target TGFBI. Thus, MIR100HG controls the magnitude of TGFβ signaling via TGFβ1 autoinduction and secretion in carcinomas.
ALS-linked FUS mutations confer loss and gain of function in the nucleus by promoting excessive formation of dysfunctional paraspeckles.

Acta Neuropathol Commun. 2019 Jan 14;7(1):7.

2019 Jan 14

An H, Skelt L, Notaro A, Highley JR, Fox AH, La Bella V, Buchman VL, Shelkovnikova TA.
PMID: PMID: 30642400 | DOI: DOI:10.1186/s40478-019-0658-x

Mutations in the FUS gene cause amyotrophic lateral sclerosis (ALS-FUS). Mutant FUS is known to confer cytoplasmic gain of function but its effects in the nucleus are less understood. FUS is an essential component of paraspeckles, subnuclear bodies assembled on a lncRNA NEAT1. Paraspeckles may play a protective role specifically in degenerating spinal motor neurons. However it is still unknown how endogenous levels of mutant FUS would affect NEAT1/paraspeckles. Using novel cell lines with the FUS gene modified by CRISPR/Cas9 and human patient fibroblasts, we found that endogenous levels of mutant FUS cause accumulation of NEAT1 isoforms and paraspeckles. However, despite only mild cytoplasmic mislocalisation of FUS, paraspeckle integrity is compromised in these cells, as confirmed by reduced interaction of mutant FUS with core paraspeckle proteins NONO and SFPQ and increased NEAT1 extractability. This results in NEAT1 localisation outside paraspeckles, especially prominent under conditions of paraspeckle-inducing stress. Consistently, paraspeckle-dependent microRNA production, a readout for functionality of paraspeckles, is impaired in cells expressing mutant FUS. In line with the cellular data, we observed paraspeckle hyper-assembly in spinal neurons of ALS-FUS patients. Therefore, despite largely preserving its nuclear localisation, mutant FUS leads to loss (dysfunctional paraspeckles) and gain (excess of free NEAT1) of function in the nucleus. Perturbed fine structure and functionality of paraspeckles accompanied by accumulation of non-paraspeckle NEAT1 may contribute to the disease severity in ALS-FUS.
Comparative characterization of SARS-CoV-2 variants of concern and mouse-adapted strains in mice

Journal of medical virology

2022 Mar 23

Chen, Q;Huang, XY;Liu, Y;Sun, MX;Ji, B;Zhou, C;Chi, H;Zhang, RR;Luo, D;Tian, Y;Li, XF;Zhao, H;Qin, CF;
PMID: 35322439 | DOI: 10.1002/jmv.27735

SARS-CoV-2 has evolved into a panel of variants of concern (VOCs) and constituted a sustained threat to global health. The wildtype (WT) SARS-CoV-2 isolates fail to infect mice, while the Beta variant, one of the VOCs, has acquired the capability to infect standard laboratory mice, raising a spreading risk of SARS-CoV-2 from humans to mice. However, the infectivity and pathogenicity of other VOCs in mice remain not fully understood. In this study, we systematically investigated the infectivity and pathogenicity of three VOCs, Alpha, Beta, and Delta, in mice in comparison with two well-understood SARS-CoV-2 mouse-adapted strains, MASCp6 and MASCp36, sharing key mutations in the receptor-binding domain (RBD) with Alpha or Beta, respectively. Our results showed that the Beta variant had the strongest infectivity and pathogenicity among the three VOCs, while the Delta variant only caused limited replication and mild pathogenic changes in the mouse lung, which is much weaker than what the Alpha variant did. Meanwhile, Alpha showed comparable infectivity in lungs in comparison with MASCp6, and Beta only showed slightly lower infectivity in lungs when compared with MASCp36. These results indicated that all three VOCs have acquired the capability to infect mice, highlighting the ongoing spillover risk of SARS-CoV-2 from humans to mice during the continued evolution of SARS-CoV-2, and that the key amino acid mutations in the RBD of mouse-adapted strains may be referenced as an early-warning indicator for predicting the spillover risk of newly emerging SARS-CoV-2 variants.
Intrauterine Fetal Demise After Uncomplicated COVID-19: What Can We Learn from the Case?

Viruses

2021 Dec 19

Babal, P;Krivosikova, L;Sarvaicova, L;Deckov, I;Szemes, T;Sedlackova, T;Palkovic, M;Kalinakova, A;Janega, P;
PMID: 34960815 | DOI: 10.3390/v13122545

SARS-CoV-2 infection in pregnant women can lead to placental damage and transplacental infection transfer, and intrauterine fetal demise is an unpredictable event.A 32-year-old patient in her 38th week of pregnancy reported loss of fetal movements. She overcame mild COVID-19 with positive PCR test 22 days before. A histology of the placenta showed deposition of intervillous fibrinoid, lympho-histiocytic infiltration, scant neutrophils, clumping of villi, and extant infarctions. Immunohistochemistry identified focal SARS-CoV-2 nucleocapsid and spike protein in the syncytiotrophoblast and isolated in situ hybridization of the virus' RNA. Low ACE2 and TMPRSS2 contrasted with strong basigin/CD147 and PDL-1 positivity in the trophoblast. An autopsy of the fetus showed no morphological abnormalities except for lung interstitial infiltrate, with prevalent CD8-positive T-lymphocytes and B-lymphocytes. Immunohistochemistry and in situ hybridization proved the presence of countless dispersed SARS-CoV-2-infected epithelial and endothelial cells in the lung tissue. The potential virus-receptor protein ACE2, TMPRSS2, and CD147 expression was too low to be detected.Over three weeks' persistence of trophoblast viral infection lead to extensive intervillous fibrinoid depositions and placental infarctions. High CD147 expression might serve as the dominant receptor for the virus, and PDL-1 could limit maternal immunity in placental tissue virus clearance. The presented case indicates that the SARS-CoV-2 infection-induced changes in the placenta lead to ischemia and consecutive demise of the fetus. The infection of the fetus was without significant impact on its death. This rare complication of pregnancy can appear independently to the severity of COVID-19's clinical course in the pregnant mother.
Establishment of A Novel Humanized Mouse Model To Investigate In Vivo Activation and Depletion of Patient-Derived HIV Latent Reservoirs.

J Virol. 2019 Jan 9.

2019 Jan 09

Flerin NC, Bardhi A, Zheng JH, Korom M, Folkvord J, Kovacs C, Benko E, Truong R, Mota T, Connick E, Jones RB, Lynch RM, Goldstein H.
PMID: PMID: 30626677 | DOI: DOI:10.1128/JVI.02051-18

Curing HIV infection has been thwarted by the persistent reservoir of latently-infected CD4+ T cells, which reinitiate systemic infection after antiretroviral therapy (ART) interruption. To evaluate reservoir-depletion strategies, we developed a novel pre-clinical in vivo model consisting of immunodeficient mice intrasplenically injected with peripheral blood mononuclear cells (PBMC) from long-term ART-suppressed HIV-infected donors. In the absence of ART, these mice developed rebound viremia which, two weeks after PBMC injection, was 1,000-fold higher (mean=9,229,281 HIV copies/ml) in mice injected intrasplenically than in mice injected intraperitoneally (mean=6,838 HIV copies/ml) or intravenously (mean=591 HIV copies/ml). One week after intrasplenic PBMC injection, in situ hybridization of the spleen demonstrated extensive disseminated HIV infection, likely initiated from in vivo reactivated primary latently infected cells. Time-to-viremia was delayed significantly by treatment with a broadly neutralizing antibody, 10-1074, as compared to treatment with 10-1074-FcRnull, suggesting that 10-1074 mobilized Fc-mediated effector mechanisms to deplete the replication-competent reservoir. This was supported by phylogenetic analysis of Env sequences from viral-outgrowth cultures and untreated, 10-1074-treated or 10-1074-FcRnull-treated mice. The predominant sequence cluster detected in viral-outgrowth cultures and untreated mouse plasma was significantly reduced in plasma of 10-1074-treated mice, while two new clusters emerged which were not detected in viral-outgrowth cultures or plasma from untreated mice. These new clusters lacked mutations associated with 10-1074 resistance. Taken together, these data indicated that 10-1074 treatment depletes the reservoir of latently infected cells harboring replication competent HIV. Furthermore, this mouse model represents a new in vivo approach for the preclinical evaluation of new HIV-cure strategies.IMPORTANCE Sustained remission of HIV infection is prevented by a persistent reservoir of latently infected cells capable of reinitiating systemic infection and viremia. To evaluate strategies to reactivate and deplete this reservoir, we developed and characterized a new humanized mouse model consisting of highly immunodeficient mice intrasplenically injected with peripheral blood mononuclear cells from long-term ART-suppressed HIV-infected donors. Reactivation and dissemination of HIV infection was visualized in the mouse spleens in parallel with the onset of viremia. The applicability of this model for evaluating reservoir depletion treatments was demonstrated by establishing, through delayed time-to-viremia and phylogenetic analysis of plasma virus, that treatment of these humanized mice with a broadly neutralizing antibody, 10-1074, depleted the patient-derived population of latently infected cells. This mouse model represents a new in vivo approach for the preclinical evaluation of new HIV-cure strategies.
Morphogenesis of the female reproductive tract along antero-posterior and dorso-ventral axes is dependent on Amhr2+ mesenchyme in mice†

Biology of reproduction

2022 Sep 20

Jia, S;Wilbourne, J;Crossen, MJ;Zhao, F;
PMID: 36130202 | DOI: 10.1093/biolre/ioac179

Morphogenesis of the female reproductive tract is regulated by the mesenchyme. However, the identity of the mesenchymal lineage that directs the morphogenesis of the female reproductive tract has not been determined. Using in vivo genetic cell ablation, we identified Amhr2+ mesenchyme as an essential mesenchymal population in patterning the female reproductive tract. After partial ablation of Amhr2+ mesenchymal cells, the oviduct failed to develop its characteristic coiling due to decreased epithelial proliferation and tubule elongation during development. The uterus displayed a reduction in size and showed decreased cellular proliferation in both epithelial and mesenchymal compartments. More importantly, in the uterus, partial ablation of Amhr2+ mesenchyme caused abnormal lumen shape and altered the direction of its long axis from the dorsal-ventral axis to the left-right axis (i.e. perpendicular to the dorsal-ventral axis). Despite these morphological defects, epithelia underwent normal differentiation into secretory and ciliated cells in the oviduct and glandular epithelial cells in the uterus. These results demonstrated that Amhr2+ mesenchyme can direct female reproductive tract morphogenesis by regulating epithelial proliferation and lumen shape without affecting the differentiation of epithelial cell types.
Subcutaneous delivery of FGF21 mRNA therapy reverses obesity, insulin resistance, and hepatic steatosis in diet-induced obese mice

Molecular Therapy - Nucleic Acids

2022 Jun 01

Bartesaghi, S;Wallenius, K;Hovdal, D;Liljeblad, M;Wallin, S;Dekker, N;Barlind, L;Davies, N;Seeliger, F;Winzell, M;Patel, S;Theisen, M;Brito, L;Bergenhem, N;Andersson, S;Peng, X;
| DOI: 10.1016/j.omtn.2022.04.010

Fibroblast growth factor 21 (FGF21) is a promising therapeutic agent for treatment of type 2 diabetes (T2D) and non-alcoholic steatohepatitis (NASH). We show that therapeutic levels of FGF21 were achieved following subcutaneous (s.c.) administration of mRNA encoding human FGF21 proteins. The efficacy of mRNA was assessed following 2-weeks repeated s.c. dosing in diet-induced obese (DIO), mice which resulted in marked decreases in body weight, plasma insulin levels, and hepatic steatosis. Pharmacokinetic/pharmacodynamic (PK/PD) modelling of several studies in both lean and DIO mice showed that mRNA encoding human proteins provided improved therapeutic coverage over recombinant dosed proteins in vivo. This study is the first example of s.c. mRNA therapy showing pre-clinical efficacy in a disease-relevant model, thus, showing the potential for this modality in the treatment of chronic diseases, including T2D and NASH.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?