Sjöblom, A;Pehkonen, H;Jouhi, L;Monni, O;Randén-Brady, R;Karhemo, PR;Tarkkanen, J;Haglund, C;Mattila, P;Mäkitie, A;Hagström, J;Carpén, T;
PMID: 37335526 | DOI: 10.1007/s12105-023-01565-7
Liprin-α1 is a scaffold protein involved in cell adhesion, motility, and invasion in malignancies. Liprin-α1 inhibits the expression of metastatic suppressor CD82 in cancers such as oral carcinoma, and the expression of these proteins has been known to correlate negatively. The role of these proteins has not been previously studied in human papillomavirus (HPV)-related head and neck cancers. Our aim was to assess the clinical and prognostic role of liprin-α1 and CD82 in HPV-positive oropharyngeal squamous cell carcinoma (OPSCC) in comparison to HPV-negative OPSCC.The data included 139 OPSCC patients treated at the Helsinki University Hospital (HUS) during 2012-2016. Immunohistochemistry was utilized in HPV determination and in biomarker assays. Overall survival (OS) was used in the survival analysis.Stronger expression of liprin-α1 in tumor-infiltrating lymphocytes (TILs) was linked to lower cancer stage (p < 0.001) and HPV positivity (p < 0.001). Additionally, we found an association between elevated expression of liprin-α1 and weak expression of CD82 in tumor cells (p = 0.029). In survival analysis, we found significant correlation between favorable OS and stronger expression of liprin-α1 in TILs among the whole patient cohort (p < 0.001) and among HPV-positive patients (p = 0.042).Increased liprin-α1 expression in the TILs is associated with favorable prognosis in OPSCC, especially among HPV-positive patients.
Modelling TGFβR and Hh pathway regulation of prognostic matrisome molecules in ovarian cancer
Delaine-Smith, R;Maniati, E;Malacrida, B;Nichols, S;Roozitalab, R;Jones, R;Lecker, L;Pearce, O;Knight, M;Balkwill, F;
| DOI: 10.1016/j.isci.2021.102674
In a multi-level ‘deconstruction’ of omental metastases, we previously identified a prognostic matrisome gene expression signature in high-grade serous ovarian cancer (HGSOC) and twelve other malignancies. Here, our aim was to understand how six of these extracellular matrix, ECM, molecules, COL11A1, COMP, FN1, VCAN, CTSB and COL1A1, are up-regulated in cancer. Using biopsies, we identified significant associations between TGFβR activity, Hedgehog signalling and these ECM molecules and studied the associations in mono-, co- and tri-culture. Activated omental fibroblasts produced more matrix than malignant cells, directed by TGFβR and Hedgehog signalling crosstalk. We ‘reconstructed’ omental metastases in tri-cultures of HGSOC cells, omental fibroblasts and adipocytes. This combination was sufficient to generate all six ECM proteins and the matrisome expression signature. TGFβR and Hedgehog inhibitor combinations attenuated fibroblast activation, gel and ECM remodelling in these models. The tri-culture model reproduces key features of omental metastases and allows study of diseased-associated ECM.
Virchows Archiv : an international journal of pathology
Hongo, T;Yamamoto, H;Kuga, R;Komune, N;Miyazaki, M;Tsuchihashi, NA;Noda, T;Matsumoto, N;Oda, Y;Nakagawa, T;
PMID: 36705751 | DOI: 10.1007/s00428-023-03497-7
High-risk human papillomavirus (HPV) is a risk factor for the development of several head and neck squamous cell carcinomas (SCCs). However, there have been few reports of high-risk HPV infection in temporal bone squamous cell carcinomas (TBSCCs), and thus the prevalence and clinicopathologic significance of high-risk HPV in TBSCCs are still unclear. We retrospectively collected 131 TBSCCs and analyzed them for transcriptionally active high-risk HPV infection using messenger RNA in situ hybridization; we also assessed the utility of p16-immunohistochemistry (IHC) and Rb-IHC to predict HPV infection. Eighteen (13.7%) of the 131 TBSCCs were positive for p16-IHC, and five of them were positive for high-risk HPV infection (the estimated high-risk HPV positivity rate was 3.8% [5/131]). Interestingly, all five HPV-positive patients were male and had TBSCC on the right side. In the p16-IHC+/HPV+ cases (n = 5), the Rb-IHC showed a partial loss pattern (n = 4) or complete loss pattern (n = 1). In contrast, all p16-IHC-negative cases (n = 113) showed an Rb-IHC preserved pattern. The positive predictive value (PPV) of p16-IHC positivity for high-risk HPV infection was low at 27.8%, while the combination of p16-IHC+/Rb-IHC partial loss pattern showed excellent reliability with a PPV of 100%. The prognostic significance of high-risk HPV infection remained unclear. High-risk HPV-related TBSCC is an extremely rare but noteworthy subtype.
Christiansen, P;Andreasen, C;Laursen, K;Delaisse, J;Andersen, T;
| DOI: 10.2139/ssrn.4224428
Background: Recruitment and proliferation of osteoprogenitors during the reversal-resorption phase, and their differentiation into mature bone-forming osteoblasts is crucial for initiation of bone formation during bone remodeling. This study investigates the osteoprogenitors’ gradual recruitment, proliferation, and differentiation into bone-forming osteoblasts within intracortical remodeling events of healthy adolescent humans. Methods: The study was conducted on cortical bone specimens from 11 healthy adolescent humans. The osteoprogenitor recruitment route and differentiation into osteoblasts were backtracked using immunostainings and in situ hybridizations with osteoblastic markers (CD271, osterix, collage type 1 and 3). The osteoblastic cell populations were defined based on the pore surfaces and their proliferation index (Ki67), density, and number/circumference were estimated in multiplex-immunofluorescence (Ki67, TRAcP, CD34, SMA) stained sections. Results: During the reversal-resorption phase, osteoclasts are intermixed with osteoblastic reversal cells (COL3A1 high CD271 high COL1A1 low Osterix neg ), which are considered to be spatiotemporal osteoprogenitors of bone-forming osteoblasts. Initiation of bone formation requires a critical density of these osteoblastic reversal cells (43±9 cells/mm), which is reached though proliferation (4.4±0.5% proliferative) and even more so through recruitment of osteoprogenitors, but challenged by the ongoing expansion of the canal circumference. These osteoprogenitors most likely originate from osteoblastic bone lining cells and mainly osteoblastic lumen cells, which expand their population though proliferation (4.6±0.3%) and vascular recruitment. These lumen cells resemble canopy cells above trabecular remodeling sites, and like canopy cells they extend above bone-forming osteoblasts where they may rejuvenate the osteoblast population during bone formation. Conclusion: Initiation of bone formation during intracortical remodeling requires a critical density osteoblastic reversal cells, which is reached though proliferation and recruitment of local osteoprogenitors: bone lining cells and osteoblastic lumen cells.