Sjöblom, A;Pehkonen, H;Jouhi, L;Monni, O;Randén-Brady, R;Karhemo, PR;Tarkkanen, J;Haglund, C;Mattila, P;Mäkitie, A;Hagström, J;Carpén, T;
PMID: 37335526 | DOI: 10.1007/s12105-023-01565-7
Liprin-α1 is a scaffold protein involved in cell adhesion, motility, and invasion in malignancies. Liprin-α1 inhibits the expression of metastatic suppressor CD82 in cancers such as oral carcinoma, and the expression of these proteins has been known to correlate negatively. The role of these proteins has not been previously studied in human papillomavirus (HPV)-related head and neck cancers. Our aim was to assess the clinical and prognostic role of liprin-α1 and CD82 in HPV-positive oropharyngeal squamous cell carcinoma (OPSCC) in comparison to HPV-negative OPSCC.The data included 139 OPSCC patients treated at the Helsinki University Hospital (HUS) during 2012-2016. Immunohistochemistry was utilized in HPV determination and in biomarker assays. Overall survival (OS) was used in the survival analysis.Stronger expression of liprin-α1 in tumor-infiltrating lymphocytes (TILs) was linked to lower cancer stage (p < 0.001) and HPV positivity (p < 0.001). Additionally, we found an association between elevated expression of liprin-α1 and weak expression of CD82 in tumor cells (p = 0.029). In survival analysis, we found significant correlation between favorable OS and stronger expression of liprin-α1 in TILs among the whole patient cohort (p < 0.001) and among HPV-positive patients (p = 0.042).Increased liprin-α1 expression in the TILs is associated with favorable prognosis in OPSCC, especially among HPV-positive patients.
Brassinosteroid signaling integrates multiple pathways to release apical dominance in tomato
Proceedings of the National Academy of Sciences
Xia, X;Dong, H;Yin, Y;Song, X;Gu, X;Sang, K;Zhou, J;Shi, K;Zhou, Y;Foyer, C;Yu, J;
| DOI: 10.1073/pnas.2004384118
The control of apical dominance involves auxin, strigolactones (SLs), cytokinins (CKs), and sugars, but the mechanistic controls of this regulatory network are not fully understood. Here, we show that brassinosteroid (BR) promotes bud outgrowth in tomato through the direct transcriptional regulation of BRANCHED1 (BRC1) by the BR signaling component BRASSINAZOLE-RESISTANT1 (BZR1). Attenuated responses to the removal of the apical bud, the inhibition of auxin, SLs or gibberellin synthesis, or treatment with CK and sucrose, were observed in bud outgrowth and the levels of BRC1 transcripts in the BR-deficient or bzr1 mutants. Furthermore, the accumulation of BR and the dephosphorylated form of BZR1 were increased by apical bud removal, inhibition of auxin, and SLs synthesis or treatment with CK and sucrose. These responses were decreased in the DELLA-deficient mutant. In addition, CK accumulation was inhibited by auxin and SLs, and decreased in the DELLA-deficient mutant, but it was increased in response to sucrose treatment. CK promoted BR synthesis in axillary buds through the action of the type-B response regulator, RR10. Our results demonstrate that BR signaling integrates multiple pathways that control shoot branching. Local BR signaling in axillary buds is therefore a potential target for shaping plant architecture.
Proceedings of the National Academy of Sciences of the United States of America
Dong, H;Wang, J;Song, X;Hu, C;Zhu, C;Sun, T;Zhou, Z;Hu, Z;Xia, X;Zhou, J;Shi, K;Zhou, Y;Foyer, CH;Yu, J;
PMID: 37036969 | DOI: 10.1073/pnas.2301879120
Light plays an important role in determining plant architecture, which greatly influences crop yield. However, the precise mechanisms by which light signaling regulates bud outgrowth remain to be identified. Here, we show that light regulates bud outgrowth via both HY5 and brassinosteroid (BR)-dependent pathways in tomato. Inactivation of the red-light photoreceptor PHYB, or deficiencies in PHYB or the blue-light photoreceptor CRY1a, inhibits bud outgrowth and leads to decreased accumulation of HY5 protein and increased transcript level of BRANCHED1 (BRC1), a central integrator of branching signals. HY5, functioning as a mobile systemic signal from leaves, promotes bud outgrowth by directly suppressing BRC1 transcript and activating the transcript of BR biosynthesis genes within the lateral buds in tomato. Furthermore, BRC1 prevents the accumulation of cytokinin (CK) and gibberellin (GA) by directly inhibiting the transcript of CK synthesis gene LOG4, while increasing the transcript levels of CK and GA degradation genes (CKX7, GA2ox4, and GA2ox5), leading to an arrest of bud outgrowth. Moreover, bud outgrowth occurs predominantly in the day due to the suppression of BRC1 transcript by HY5. These findings demonstrate that light-inducible HY5 acts as a systemic signaling factor in fine-tuning the bud outgrowth of tomato.
Virchows Archiv : an international journal of pathology
Hongo, T;Yamamoto, H;Kuga, R;Komune, N;Miyazaki, M;Tsuchihashi, NA;Noda, T;Matsumoto, N;Oda, Y;Nakagawa, T;
PMID: 36705751 | DOI: 10.1007/s00428-023-03497-7
High-risk human papillomavirus (HPV) is a risk factor for the development of several head and neck squamous cell carcinomas (SCCs). However, there have been few reports of high-risk HPV infection in temporal bone squamous cell carcinomas (TBSCCs), and thus the prevalence and clinicopathologic significance of high-risk HPV in TBSCCs are still unclear. We retrospectively collected 131 TBSCCs and analyzed them for transcriptionally active high-risk HPV infection using messenger RNA in situ hybridization; we also assessed the utility of p16-immunohistochemistry (IHC) and Rb-IHC to predict HPV infection. Eighteen (13.7%) of the 131 TBSCCs were positive for p16-IHC, and five of them were positive for high-risk HPV infection (the estimated high-risk HPV positivity rate was 3.8% [5/131]). Interestingly, all five HPV-positive patients were male and had TBSCC on the right side. In the p16-IHC+/HPV+ cases (n = 5), the Rb-IHC showed a partial loss pattern (n = 4) or complete loss pattern (n = 1). In contrast, all p16-IHC-negative cases (n = 113) showed an Rb-IHC preserved pattern. The positive predictive value (PPV) of p16-IHC positivity for high-risk HPV infection was low at 27.8%, while the combination of p16-IHC+/Rb-IHC partial loss pattern showed excellent reliability with a PPV of 100%. The prognostic significance of high-risk HPV infection remained unclear. High-risk HPV-related TBSCC is an extremely rare but noteworthy subtype.