ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
NPJ vaccines
2022 Oct 31
Gavitt, TD;Mara, AB;Goodridge, ML;Ozyck, RG;Reinhardt, E;Miller, JM;Hunte, M;Tulman, ER;Frasca, S;Silbart, LK;Geary, SJ;Szczepanek, SM;
PMID: 36310317 | DOI: 10.1038/s41541-022-00556-z
Inflamm Bowel Dis. 2017 Nov;23(11):1950-1961.
2017 Nov 23
Shouval DS, Konnikova L, Griffith AE, Wall SM, Biswas A, Werner L, Nunberg M, Kammermeier J, Goettel JA, Anand R, Chen H, Weiss B, Li J, Loizides A, Yerushalmi B, Yanagi T, Beier R, Conklin LS, Ebens CL, Santos FGMS, Sherlock M, Goldsmith JD, Kotlarz D, Glover SC, Shah N, Bousvaros A, Uhlig HH, Muise AM, Klein C, Snapper SB.
PMID: 29023267 | DOI: 10.1097/MIB.0000000000001270
PloS one
2022 Apr 05
Wymore Brand, M;Proctor, AL;Hostetter, JM;Zhou, N;Friedberg, I;Jergens, AE;Phillips, GJ;Wannemuehler, MJ;
PMID: 35381031 | DOI: 10.1371/journal.pone.0266005
Liver Int.
2019 May 14
Li S, Lv T, Zhang C, Wang T, Tian D, Sun G, Wang Y, Zhao X, Duan W, Chen S, Li M, Ma H, Kong Y, You H, Ou X, Chen G, Su J, Zhang D, Jia J.
PMID: 31087812 | DOI: 10.1111/liv.14136
Abstract
BACKGROUND & AIMS:
Double-negative (DN) T-cell is a unique regulatory T-cell, which is essential for maintaining immune system homeostasis. However, the role of DN T-cells in the pathogenesis of primary biliary cholangitis (PBC) is still unknown.
METHODS:
We investigated the number and function of DN T-cells in peripheral blood and liver biopsy specimens of PBC patients.
RESULTS:
The number and frequency of DN T-cells significantly decreased in peripheral blood and liver tissue of PBC patients. Furthermore, the frequency of DN T-cells in PBC was negatively correlated with disease severity and positively correlated with UDCA response. In vitro assays showed that perforin expression and the suppressive capability of DN T-cells on the proliferation of CD4+ and CD8+ T-cells were impaired in PBC. Finally, lithocholic acid, the most hydrophobic acid, could downregulate the proliferation and perforin expression of DN T-cells.
CONCLUSIONS:
Decreased quantity and function of DN T-cells in PBC may result in the loss of immune regulations on effector CD4+ and cytotoxic CD8+ T-cells, and thereby may break the immune tolerance and promote the pathogenesis of PBC.
Inflamm Bowel Dis
2019 May 22
Magg T, Shcherbina A, Arslan D, Desai MM, Wall S, Mitsialis V, Conca R, Unal E, Karacabey N, Mukhina A, Rodina Y, Taur PD, Illig D, Marquardt B, Hollizeck S, Jeske T, Gothe F, Schober T, Rohlfs M, Koletzko S, Lurz E, Muise AM, Snapper SB, Hauck F, Klein C, Kotlarz D.
PMID: 31115454 | DOI: 10.1093/ibd/izz103
Children with very early onset inflammatory bowel diseases (VEO-IBD) often have a refractory and severe disease course. A significant number of described VEO-IBD-causing monogenic disorders can be attributed to defects in immune-related genes. The diagnosis of the underlying primary immunodeficiency (PID) often has critical implications for the treatment of patients with IBD-like phenotypes.
To identify the molecular etiology in 5 patients from 3 unrelated kindred with IBD-like symptoms, we conducted whole exome sequencing. Immune workup confirmed an underlying PID.
Whole exome sequencing revealed 3 novel CARMIL2 loss-of-function mutations in our patients. Immunophenotyping of peripheral blood mononuclear cells showed reduction of regulatory and effector memory T cells and impaired B cell class switching. The T cell proliferation and activation assays confirmed defective responses to CD28 costimulation, consistent with CARMIL2 deficiency.
Our study highlights that human CARMIL2 deficiency can manifest with IBD-like symptoms. This example illustrates that early diagnosis of underlying PID is crucial for the treatment and prognosis of children with VEO-IBD.
Immunity
2018 Aug 07
Bauché D, Joyce-Shaikh B, Jain R, Grein J, Ku KS, Blumenschein WM, Ganal-Vonarburg SC, Wilson DC, McClanahan TK, Malefyt RdW, Macpherson AJ, Annamalai L, Yearley JH, Cua, Daniel J.
PMID: - | DOI: 10.1016/j.immuni.2018.07.007
Interleukin-22 (IL-22)-producing group 3 innate lymphoid cells (ILC3) maintains gut homeostasis but can also promote inflammatory bowel disease (IBD). The regulation of ILC3-dependent colitis remains to be elucidated. Here we show that Foxp3 + regulatory T cells (Treg cells) prevented ILC3-mediated colitis in an IL-10-independent manner. Treg cells inhibited IL-23 and IL-1β production from intestinal-resident CX3CR1 + macrophages but not CD103 + dendritic cells. Moreover, Treg cells restrained ILC3 production of IL-22 through suppression of CX3CR1 + macrophage production of IL-23 and IL-1β. This suppression was contact dependent and was mediated by latent activation gene-3 (LAG-3)—an immune checkpoint receptor—expressed on Treg cells. Engagement of LAG-3 on MHC class II drove profound immunosuppression of CX3CR1+ tissue-resident macrophages. Our study reveals that the health of the intestinal mucosa is maintained by an axis driven by Treg cells communication with resident macrophages that withhold inflammatory stimuli required for ILC3 function.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com