Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (292)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • SARS-CoV-2 (15) Apply SARS-CoV-2 filter
  • Lgr5 (10) Apply Lgr5 filter
  • TBD (9) Apply TBD filter
  • HPV E6/E7 (6) Apply HPV E6/E7 filter
  • MALAT1 (5) Apply MALAT1 filter
  • COL1A1 (5) Apply COL1A1 filter
  • Runx2 (5) Apply Runx2 filter
  • Wnt6 (4) Apply Wnt6 filter
  • CXCL10 (4) Apply CXCL10 filter
  • Wnt2b (4) Apply Wnt2b filter
  • Wnt9b (4) Apply Wnt9b filter
  • OLFM4 (4) Apply OLFM4 filter
  • SHH (4) Apply SHH filter
  • Wnt3 (4) Apply Wnt3 filter
  • ZIKV (4) Apply ZIKV filter
  • V-nCoV2019-S (4) Apply V-nCoV2019-S filter
  • ACTA2 (3) Apply ACTA2 filter
  • Wnt16 (3) Apply Wnt16 filter
  • Wnt4 (3) Apply Wnt4 filter
  • Axin2 (3) Apply Axin2 filter
  • Sox9 (3) Apply Sox9 filter
  • Rspo3 (3) Apply Rspo3 filter
  • Wnt5a (3) Apply Wnt5a filter
  • ESR1 (3) Apply ESR1 filter
  • GLI1 (3) Apply GLI1 filter
  • HOTAIR (3) Apply HOTAIR filter
  • Bmp2 (3) Apply Bmp2 filter
  • Col2a1 (3) Apply Col2a1 filter
  • WNT2 (3) Apply WNT2 filter
  • Ihh (3) Apply Ihh filter
  • HPV-HR18 (3) Apply HPV-HR18 filter
  • Wnt10a (2) Apply Wnt10a filter
  • Wnt10b (2) Apply Wnt10b filter
  • Wnt7a (2) Apply Wnt7a filter
  • MYO10 (2) Apply MYO10 filter
  • Wnt7b (2) Apply Wnt7b filter
  • Dmp1 (2) Apply Dmp1 filter
  • Rspo2 (2) Apply Rspo2 filter
  • CDH1 (2) Apply CDH1 filter
  • HES1 (2) Apply HES1 filter
  • Cpt1a (2) Apply Cpt1a filter
  • Wnt11 (2) Apply Wnt11 filter
  • Wnt3a (2) Apply Wnt3a filter
  • Wnt5b (2) Apply Wnt5b filter
  • Wnt8a (2) Apply Wnt8a filter
  • Wnt8b (2) Apply Wnt8b filter
  • Wnt9a (2) Apply Wnt9a filter
  • LYPD1 (2) Apply LYPD1 filter
  • NOTUM (2) Apply NOTUM filter
  • POLR2A (2) Apply POLR2A filter

Product

  • (-) Remove RNAscope 2.5 HD Brown Assay filter RNAscope 2.5 HD Brown Assay (292)

Research area

  • Cancer (88) Apply Cancer filter
  • Neuroscience (38) Apply Neuroscience filter
  • Inflammation (33) Apply Inflammation filter
  • Development (29) Apply Development filter
  • Covid (24) Apply Covid filter
  • HPV (22) Apply HPV filter
  • Infectious (21) Apply Infectious filter
  • Infectious Disease (16) Apply Infectious Disease filter
  • Other (12) Apply Other filter
  • Stem Cells (12) Apply Stem Cells filter
  • lncRNA (9) Apply lncRNA filter
  • Reproduction (7) Apply Reproduction filter
  • CGT (3) Apply CGT filter
  • Immunotherapy (3) Apply Immunotherapy filter
  • Kidney (3) Apply Kidney filter
  • LncRNAs (3) Apply LncRNAs filter
  • Metabolism (3) Apply Metabolism filter
  • Other: Reproductive Biology (3) Apply Other: Reproductive Biology filter
  • Stem cell (3) Apply Stem cell filter
  • therapeutics (3) Apply therapeutics filter
  • Developmental (2) Apply Developmental filter
  • HIV (2) Apply HIV filter
  • Lung (2) Apply Lung filter
  • Other: Immunology (2) Apply Other: Immunology filter
  • Other: Lung (2) Apply Other: Lung filter
  • Other: Metabolism (2) Apply Other: Metabolism filter
  • Pain (2) Apply Pain filter
  • Aging (1) Apply Aging filter
  • Bone (1) Apply Bone filter
  • diabetes (1) Apply diabetes filter
  • Endocrinology (1) Apply Endocrinology filter
  • Feeding Behavior (1) Apply Feeding Behavior filter
  • Immuno (1) Apply Immuno filter
  • Immuno-Oncology (1) Apply Immuno-Oncology filter
  • Immunology (1) Apply Immunology filter
  • Infectious diseases (1) Apply Infectious diseases filter
  • Liver (1) Apply Liver filter
  • Lupus (1) Apply Lupus filter
  • Other: Adaptive Immunity (1) Apply Other: Adaptive Immunity filter
  • Other: Bone (1) Apply Other: Bone filter
  • Other: Cell Biology (1) Apply Other: Cell Biology filter
  • Other: Endocrinology (1) Apply Other: Endocrinology filter
  • Other: Liver (1) Apply Other: Liver filter
  • Other: Methods (1) Apply Other: Methods filter
  • Other: Single-cell transcriptomics (1) Apply Other: Single-cell transcriptomics filter
  • Parasite (1) Apply Parasite filter
  • polycystic ovarian syndrome (1) Apply polycystic ovarian syndrome filter
  • Reproductive Health (1) Apply Reproductive Health filter
  • Skin (1) Apply Skin filter
  • Vaccine (1) Apply Vaccine filter

Category

  • Publications (292) Apply Publications filter
Targeted Delivery of Antisense Oligonucleotides Through Angiotensin Type 1 Receptor

Nucleic acid therapeutics

2022 May 24

Kuo, C;Nikan, M;Yeh, ST;Chappell, AE;Tanowitz, M;Seth, PP;Prakash, TP;Mullick, AE;
PMID: 35612431 | DOI: 10.1089/nat.2021.0105

We evaluated the potential of AGTR1, the principal receptor for angiotensin II (Ang II) and a member of the G protein-coupled receptor family, for targeted delivery of antisense oligonucleotides (ASOs) in cells and tissues with abundant AGTR1 expression. Ang II peptide ASO conjugates maintained robust AGTR1 signaling and receptor internalization when ASO was placed at the N-terminus of the peptide, but not at C-terminus. Conjugation of Ang II peptide improved ASO potency up to 12- to 17-fold in AGTR1-expressing cells. Additionally, evaluation of Ang II conjugates in cells lacking AGTR1 revealed no enhancement of ASO potency. Ang II peptide conjugation improves potency of ASO in mouse heart, adrenal, and adipose tissues. The data presented in this report add to a growing list of approaches for improving ASO potency in extrahepatic tissues.
Zika virus shedding in the stool and infection through the anorectal mucosa in mice.

Emerg Microbes Infect. 2018 Oct 17;7(1):169.

2018 Oct 17

Li C, Deng YQ, Zu S, Quanquin N, Shang J, Tian M, Ji X, Zhang NN, Dong HL, Xu YP, Zhao LZ, Zhang FC, Li XF, Wu A, Cheng G, Qin CF.
PMID: 30333476 | DOI: 10.1038/s41426-018-0170-6

Zika virus (ZIKV) has elicited global concern due to its unique biological features, unusual transmission routes, and unexpected clinical outcomes. Although ZIKV transmission through anal intercourse has been reported in humans, it remains unclear if ZIKV is detectable in the stool, if it can infect the host through the anal canal mucosa, and what the pathogenesis of such a route of infection might be in the mouse model. Herein, we demonstrate that ZIKV RNA can be recovered from stools in multiple mouse models, as well as from the stool of a ZIKV patient. Remarkably, intra-anal (i.a.) inoculation with ZIKV leads to efficient infection in both Ifnar1-/- and immunocompetent mice, characterized by extensive viral replication in the blood and multiple organs, including the brain, small intestine, testes, and rectum, as well as robust humoral and innate immune responses. Moreover, i.a. inoculation of ZIKV in pregnant mice resulted in transplacental infection and delayed fetal development. Overall, our results identify the anorectal mucosa as a potential site of ZIKV infection in mice, reveal the associated pathogenesis of i.a. infection, and highlight the complexity of ZIKV transmission through anal intercourse.
In Situ Hybridization Analysis of Long Non-coding RNAs MALAT1 and HOTAIR in Gastroenteropancreatic Neuroendocrine Neoplasms.

Endocr Pathol. 2019 Jan 2.

2019 Jan 02

Chu YH, Hardin H, Eickhoff J, Lloyd RV.
PMID: 30600442 | DOI: 10.1007/s12022-018-9564-1

Recent studies suggest onco-regulatory roles for two long non-coding RNAs (lncRNAs), MALAT1 and HOTAIR, in various malignancies; however, these lncRNAs have not been previously examined in neuroendocrine neoplasms (NENs) of gastroenteropancreatic origins (GEP-NENs). In this study, we evaluated the expressions and prognostic significance of MALAT1 and HOTAIR in 83 cases of GEP-NENs (60 grade 1, 17 grade 2, and 6 grade 3 tumors) diagnosed during the years 2005-2017. Expression levels of MALAT1 and HOTAIR were digitally quantitated in assembled tissue microarray slides labeled by chromogenic in situ hybridization (ISH) using InForm 1.4.0 software. We found diffuse nuclear expression of both HOTAIR and MALAT1 in all primary tumors of GEP-NENs with variable intensities. By multivariate model which adjusted for age and histologic grade, high expression of HOTAIR was associated with lower presenting T and M stages and subsequent development of metastases (P < 0.05). MALAT1 expression was associated with presenting T stage and development of metastases (P < 0.05). In summary, MALAT1 and HOTAIR are commonly expressed in GEP-NENs. High expression of either lncRNA showed grade-independent associations with clinically less aggressive disease.
Expression of GLUT1 in Pseudopalisaded and Perivascular Tumor Cells Is an Independent Prognostic Factor for Patients With Glioblastomas

J Neuropathol Exp Neurol.

2018 Dec 14

Miyoshi H, Ohshima K, Yamada K, Moritsubo M, Furuta T, Sugita Y, Morioka M, Komaki S, Nakamura H, Miyagi N, Akiba J, Abe H.
PMID: 30990881 | DOI: 10.1093/jnen/nly124

Glioblastomas are highly aggressive brain tumors with a particularly poor prognosis. Glucose transporter-1 (GLUT1/SLC2A1), a uniporter that is expressed by various carcinomas and may be involved in malignant neoplasm glycometabolism, may also be related to prognosis in glioblastomas. GLUT1 is essential to central nervous system glycometabolism. To clarify the exact role of GLUT1 in glioblastoma, we assessed the expression and localization of GLUT1 in patient samples by immunohistochemistry and in situ RNA hybridization. This revealed that GLUT1 was mainly expressed on perivascular and pseudopalisaded tumor cell membranes. All samples expressed GLUT1 to some degree, with 30.8% showing stronger staining. On the basis of these data, samples were divided into high and low expression groups, although SLC2A1 mRNA expression was also higher in the high GLUT1 expression group. Kaplan-Meier survival curves revealed that high GLUT1 expression associated with lower overall survival (log-rank test, p = 0.001) and worse patient prognoses (p = 0.001). Finally, MIB-1 staining was stronger in high GLUT1 expression samples (p = 0.0004), suggesting a link with proliferation. We therefore hypothesize that GLUT1 expression in glioblastomas may enhance glycolysis, affecting patient prognosis. Examination of GLUT1 in patients with glioblastomas may provide a new prognostic tool to improve outcome.

Deletion of androgen receptors from kisspeptin neurons prevents PCOS features in a letrozole mouse model

Endocrinology

2023 May 16

Decourt, C;Watanabe, Y;Evans, MC;Inglis, MA;Fisher, LC;Jasoni, CL;Campbell, RE;Anderson, GM;
PMID: 37191144 | DOI: 10.1210/endocr/bqad077

Polycystic ovarian syndrome (PCOS) is the leading cause of anovulatory infertility and is a heterogenous condition associated with a range of reproductive and metabolic impairments. While its etiology remains unclear, hyperandrogenism and impaired steroid negative feedback have been identified as key factors underpinning the development of PCOS-like features both clinically and in animal models. We tested the hypothesis that androgen signaling in kisspeptin-expressing neurons, which are key drivers of the neuroendocrine reproductive axis, is critically involved in PCOS pathogenesis. To this end, we used a previously validated letrozole (LET)-induced hyperandrogenic mouse model of PCOS in conjunction with Cre-lox technology to generate female mice exhibiting kisspeptin-specific deletion of androgen receptor (KARKO mice) to test whether LET-treated KARKO females are protected from the development of reproductive and metabolic PCOS-like features. LET-treated mice exhibited hyperandrogenism, and KARKO mice exhibited a significant reduction in the coexpression of kisspeptin and androgen receptor mRNA compared to controls. In support of our hypothesis, LET-treated KARKO mice exhibited improved estrous cyclicity, ovarian morphology, and insulin sensitivity in comparison to LET-treated control females. However, KARKO mice were not fully protected from the effects of LET-induced hyperandrogenism and still exhibited reduced corpora lutea numbers and increased body weight gain. These data indicate that increased androgen signaling in kisspeptin-expressing neurons plays a critical role in PCOS pathogenesis, but highlight that other mechanisms are also involved.
ISGylation is induced in neurons by demyelination driving ISG15-dependent microglial activation

Journal of neuroinflammation

2022 Oct 20

Clarkson, BDS;Grund, E;David, K;Johnson, RK;Howe, CL;
PMID: 36261842 | DOI: 10.1186/s12974-022-02618-4

The causes of grey matter pathology and diffuse neuron injury in MS remain incompletely understood. Axonal stress signals arising from white matter lesions has been suggested to play a role in initiating this diffuse grey matter pathology. Therefore, to identify the most upstream transcriptional responses in neurons arising from demyelinated axons, we analyzed the transcriptome of actively translating neuronal transcripts in mouse models of demyelinating disease. Among the most upregulated genes, we identified transcripts associated with the ISGylation pathway. ISGylation refers to the covalent attachment of the ubiquitin-like molecule interferon stimulated gene (ISG) 15 to lysine residues on substrates targeted by E1 ISG15-activating enzyme, E2 ISG15-conjugating enzymes and E3 ISG15-protein ligases. We further confirmed that ISG15 expression is increased in MS cortical and deep gray matter. Upon investigating the functional impact of neuronal ISG15 upregulation, we noted that ISG15 expression was associated changes in neuronal extracellular vesicle protein and miRNA cargo. Specifically, extracellular vesicle-associated miRNAs were skewed toward increased frequency of proinflammatory and neurotoxic miRNAs and decreased frequency of anti-inflammatory and neuroprotective miRNAs. Furthermore, we found that ISG15 directly activated microglia in a CD11b-dependent manner and that microglial activation was potentiated by treatment with EVs from neurons expressing ISG15. Further study of the role of ISG15 and ISGylation in neurons in MS and neurodegenerative diseases is warranted.
Characterization of Intercalated Cell Markers KIT and LINC01187 in Chromophobe Renal Cell Carcinoma and Other Renal Neoplasms

International journal of surgical pathology

2022 Oct 16

Mannan, R;Wang, X;Bawa, PS;Zhang, Y;Skala, SL;Chinnaiyan, AK;Dagar, A;Wang, L;Zelenka-Wang, SB;McMurry, LM;Daniel, N;Cao, X;Sangoi, AR;Gupta, S;Vaishampayan, UN;Hafez, KS;Morgan, TM;Spratt, DE;Tretiakova, MS;Argani, P;Chinnaiyan, AM;Dhanasekaran, SM;Mehra, R;
PMID: 36250542 | DOI: 10.1177/10668969221125793

Introduction: Chromophobe renal cell carcinoma (chromophobe RCC) is the third major subcategory of renal tumors after clear cell RCC and papillary RCC, accounting for approximately 5% of all RCC subtypes. Other oncocytic neoplasms seen commonly in surgical pathology practice include the eosinophilic variant of chromophobe RCC, renal oncocytoma, and low-grade oncocytic unclassified RCC. Methods: In our recent next-generation sequencing based study, we nominated a lineage-specific novel biomarker LINC01187 (long intergenic non-protein coding RNA 1187) which was found to be enriched in chromophobe RCC. Like KIT (cluster of differentiation 117; CD117), a clinically utilized chromophobe RCC related biomarker, LINC01187 is expressed in intercalated cells of the nephron. In this follow-up study, we performed KIT immunohistochemistry and LINC01187 RNA in situ hybridization (RNA-ISH) on a cohort of chromophobe RCC and other renal neoplasms, characterized the expression patterns, and quantified the expression signals of the two biomarkers in both primary and metastatic settings. Results: LINC01187, in comparison to KIT, exhibits stronger and more uniform expression within tumors while maintaining temporal and spatial consistency. LINC01187 also is devoid of intra-tumoral heterogeneous expression pattern, a phenomenon commonly noted with KIT. Conclusions: LINC01187 expression can augment the currently utilized KIT assay and help facilitate easy microscopic analyses in routine surgical pathology practice.
pH-Sensing G Protein-Coupled Receptor OGR1 (GPR68) Expression and Activation Increases in Intestinal Inflammation and Fibrosis

International journal of molecular sciences

2022 Jan 26

de Vallière, C;Cosin-Roger, J;Baebler, K;Schoepflin, A;Mamie, C;Mollet, M;Schuler, C;Bengs, S;Lang, S;Scharl, M;Seuwen, K;Ruiz, PA;Hausmann, M;Rogler, G;
PMID: 35163345 | DOI: 10.3390/ijms23031419

Local extracellular acidification occurs at sites of inflammation. Proton-sensing ovarian cancer G-protein-coupled receptor 1 (OGR1, also known as GPR68) responds to decreases in extracellular pH. Our previous studies show a role for OGR1 in the pathogenesis of mucosal inflammation, suggesting a link between tissue pH and immune responses. Additionally, pH-dependent signalling is associated with the progression of intestinal fibrosis. In this study, we aimed to investigate OGR1 expression and OGR1-mediated signalling in patients with inflammatory bowel disease (IBD). Our results show that OGR1 expression significantly increased in patients with IBD compared to non-IBD patients, as demonstrated by qPCR and immunohistochemistry (IHC). Paired samples from non-inflamed and inflamed intestinal areas of IBD patients showed stronger OGR1 IHC staining in inflamed mucosal segments compared to non-inflamed mucosa. IHC of human surgical samples revealed OGR1 expression in macrophages, granulocytes, endothelial cells, and fibroblasts. OGR1-dependent inositol phosphate (IP) production was significantly increased in CD14+ monocytes from IBD patients compared to healthy subjects. Primary human and murine fibroblasts exhibited OGR1-dependent IP formation, RhoA activation, F-actin, and stress fibre formation upon an acidic pH shift. OGR1 expression and signalling increases with IBD disease activity, suggesting an active role of OGR1 in the pathogenesis of IBD.
Increased IL-6 expression precedes reliable viral detection in the rhesus macaque brain during acute SIV infection

JCI insight

2021 Oct 22

Gopalakrishnan, RM;Aid, M;Mercado, NB;Davis, C;Malik, S;Geiger, E;Varner, V;Jones, R;Bosinger, SE;Piedra-Mora, C;Martinot, AJ;Barouch, DH;Reeves, RK;Tan, CS;
PMID: 34676832 | DOI: 10.1172/jci.insight.152013

Knowledge of immune activation in the brain during acute HIV infection is crucial for the prevention and treatment of HIV-associated neurological disorders. We determined regional brain (basal ganglia, thalamus, and frontal cortex) immune and virological profiles at 7 and 14 days post infection (dpi) with SIVmac239 in rhesus macaques. The basal ganglia and thalamus had detectable viruses earlier (7 dpi) than the frontal cortex (14 dpi) and contained higher quantities of viruses than the latter. Increased immune activation of astrocytes and significant infiltration of macrophages in the thalamus at 14 dpi coincided with elevated plasma viral load, and SIV colocalized only within macrophages. RNA signatures of proinflammatory responses, including IL-6, were detected at 7 dpi in microglia and interestingly, preceded reliable detection of virus in tissues and were maintained in the chronically infected macaques. Countering the proinflammatory response, the antiinflammatory response was not detected until increased TGF-β expression was found in perivascular macrophages at 14 dpi. But this response was not detected in chronic infection. Our data provide evidence that the interplay of acute proinflammatory and antiinflammatory responses in the brain likely contributed to the overt neuroinflammation, where the immune activation preceded reliable viral detection.
Constitutive expression of inducible nitric oxide synthase in healthy rat urothelium?

Scandinavian journal of urology

2021 Oct 23

Arnsrud Godtman, R;Hallsberg, L;Löf-Öhlin, Z;Peeker, R;Delbro, D;
PMID: 34689710 | DOI: 10.1080/21681805.2021.1948097

Contrasting findings have been reported regarding a possible constitutive expression of inducible nitric oxide synthase (iNOS) in a normal mammalian bladder. The current study was designed to further investigate such putative iNOS expression.The experiments were conducted with paraffin-embedded archival material from the urinary bladder of 6 normal, male Sprague-Dawley rats. In addition, two normal female mice (C57BL/6) were sacrificed and the urinary bladders were harvested. The occurrence of iNOS mRNA was examined by the RNAScope in situ hybridization method. Protein expression of iNOS and 3-nitrotyrosine (the latter used as an indicator of oxidative stress) was investigated by immunohistochemistry.No expression of iNOS mRNA was observed in the bladder tissue. iNOS protein and 3-nitrotyrosine were strongly expressed in the urothelium. iNOS was also expressed perinuclearly in the detrusor.Although the RNAScope methodology could not demonstrate mRNA for iNOS in the normal urinary bladder, the results by immunohistochemistry strongly suggest the occurrence of iNOS in particular, in the urothelium. Positive reactivity for 3-nitrotyrosine may indicate ongoing oxidative stress of the urothelium. The finding of perinuclear iNOS immunoreactivity could suggest an intracrine signaling function by iNOS to the nucleus.
RSPO3 is important for trabecular bone and fracture risk in mice and humans

Nature communications

2021 Aug 13

Nilsson, KH;Henning, P;Shahawy, ME;Nethander, M;Andersen, TL;Ejersted, C;Wu, J;Gustafsson, KL;Koskela, A;Tuukkanen, J;Souza, PPC;Tuckermann, J;Lorentzon, M;Ruud, LE;Lehtimäki, T;Tobias, JH;Zhou, S;Lerner, UH;Richards, JB;Movérare-Skrtic, S;Ohlsson, C;
PMID: 34389713 | DOI: 10.1038/s41467-021-25124-2

With increasing age of the population, countries across the globe are facing a substantial increase in osteoporotic fractures. Genetic association signals for fractures have been reported at the RSPO3 locus, but the causal gene and the underlying mechanism are unknown. Here we show that the fracture reducing allele at the RSPO3 locus associate with increased RSPO3 expression both at the mRNA and protein levels, increased trabecular bone mineral density and reduced risk mainly of distal forearm fractures in humans. We also demonstrate that RSPO3 is expressed in osteoprogenitor cells and osteoblasts and that osteoblast-derived RSPO3 is the principal source of RSPO3 in bone and an important regulator of vertebral trabecular bone mass and bone strength in adult mice. Mechanistic studies revealed that RSPO3 in a cell-autonomous manner increases osteoblast proliferation and differentiation. In conclusion, RSPO3 regulates vertebral trabecular bone mass and bone strength in mice and fracture risk in humans.
Gonadal somatic cell-specific transforming growth factor-β superfamily member in the Yesso scallop reveals gonadal somatic cell distribution during the reproductive phase

Gene

2021 Jun 30

Konuma, M;Nagasawa, K;Mokrina, M;Kobayashi, M;Osada, M;
PMID: 33831497 | DOI: 10.1016/j.gene.2021.145627

The objective of this study was to identify the gonadal somatic cells in the Yesso scallop using a novel molecular marker. This study is the first to identify the bone morphogenetic protein 2a (Bmp2a) gene as a gonadal somatic cell-specific gene in this bivalve. We performed a transcriptomic survey to identify the transforming growth factor-β (TGFβ) superfamily members that act in Yesso scallop gonad development. BLAST survey, phylogenetic tree, and RT-PCR analyses screened BMP molecules (i.e., bmp2a and bmp10a), which are members of the TGFβ superfamily that show gonad-specific expression. Among the BMPs from the Yesso scallop, in situ hybridization accompanied by RNAscope assay identified that bmp2a mRNA was specifically expressed in the gonadal somatic cells localized in the interspace between germ cells. Real-time quantitative PCR (qPCR) analysis revealed that bmp2a mRNA expression increased during the reproductive phase. The relative expression of bmp2a mRNA was lowest at the beginning of the growing stage and peaked at the mature stage in both sexes. These observations indicate that bmp2a-positive gonadal somatic cells support germ cell growth and differentiation during the reproductive phase for both sexes. This study provides new insights into gonadal somatic cell biology in marine invertebrates and we propose that TGFβ signaling is necessary for gonad development in bivalves.

Pages

  • « first
  • ‹ previous
  • …
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?