WNT signaling in pre-granulosa cells is required for ovarian folliculogenesis and female fertility
Development (Cambridge, England)
Habara, O;Logan, CY;Kanai-Azuma, M;Nusse, R;Takase, HM;
PMID: 33914868 | DOI: 10.1242/dev.198846
In mammalian ovaries, immature oocytes are reserved in primordial follicles until their activation for potential ovulation. Precise control of primordial follicle activation (PFA) is essential for reproduction, but how this is achieved is unclear. Here, we show that canonical wingless-type MMTV integration site family (WNT) signaling is pivotal for pre-granulosa cell (pre-GC) activation during PFA. We identified several WNT ligands expressed in pre-GCs that act in an autocrine manner. Inhibition of WNT secretion from pre-GCs/GCs by conditional knockout (cKO) of the wntless (Wls) gene led to female infertility. In Wls cKO mice, GC layer thickness was greatly reduced in growing follicles, which resulted in impaired oocyte growth with both an abnormal, sustained nuclear localization of forkhead box O3 (FOXO3) and reduced phosphorylation of ribosomal protein S6 (RPS6). Constitutive stabilization of β-catenin (CTNNB1) in pre-GCs/GCs induced morphological changes of pre-GCs from a squamous into a cuboidal form, though it did not influence oocyte activation. Our results reveal that canonical WNT signaling plays a permissive role in the transition of pre-GCs to GCs, which is an essential step to support oocyte growth.
Cellular and molecular gastroenterology and hepatology
Kim, TY;Kim, S;Kim, Y;Lee, YS;Lee, S;Lee, SH;Kweon, MN;
PMID: 34971821 | DOI: 10.1016/j.jcmgh.2021.12.015
Dietary signals are known to modulate stemness and tumorigenicity of intestinal progenitors; however, the impact of a high-fat diet (HFD) on the intestinal stem cell (ISC) niche and its association with colorectal cancer remains unclear. Thus, we aimed to investigate how a HFD affects the ISC niche and its regulatory factors.Mice were fed a purified diet (PD) or HFD for 2 months. The expression levels of ISC-related markers, ISC-supportive signals, and Wnt2b were assessed with real-time quantitative polymerase chain reaction, in situ hybridization, and immunofluorescence staining. RNA sequencing and metabolic function were analyzed in mesenchymal stromal cells (MSCs) from PD- and HFD-fed mice. Fecal microbiota were analyzed by 16s rRNA sequencing. Bile salt hydrolase activity and bile acid (BA) levels were measured.We found that expression of CD44 and Wnt signal-related genes was higher in the colonic crypts of HFD-fed mice than in those fed a PD. Within the ISC niche, MSCs were expanded and secreted predominant levels of Wnt2b in the colon of HFD-fed mice. Of note, increased energy metabolism and cancer-associated fibroblast (CAF)-like properties were found in the colonic MSCs of HFD-fed mice. Moreover, colonic MSCs from HFD-fed mice promoted the growth of tumorigenic properties and accelerated the expression of cancer stem cell (CSC)-related markers in colon organoids. In particular, production of primary and secondary BAs was increased through the expansion of bile salt hydrolase-encoding bacteria in HFD-fed mice. Most importantly, BAs-FXR interaction stimulated Wnt2b production in colonic CAF-like MSCs.HFD-induced colonic CAF-like MSCs play an indispensable role in balancing the properties of CSCs through activation of the BAs-FXR axis.
Journal of molecular biology
Riepler, L;Frommelt, LS;Wilmschen-Tober, S;Mbuya, W;Held, K;Volland, A;von Laer, D;Geldmacher, C;Kimpel, J;
PMID: 37086948 | DOI: 10.1016/j.jmb.2023.168096
Human papilloma virus (HPV) infections are associated with almost all cervical cancers and to a lower extend also with anogenital or oropharyngeal cancers. HPV proteins expressed in HPV-associated tumors are attractive antigens for cancer vaccination strategies as self-tolerance, which is associated with most endogenous tumor-associated antigens, does not need to be overcome. In this study, we generated a live attenuated cancer vaccine based on the chimeric vesicular stomatitis virus VSV-GP, which has previously proven to be a potent vaccine vector and oncolytic virus. Genes at an earlier position in the genome more to the 3' end are expressed stronger compared to genes located further downstream. By inserting an HPV16-derived antigen cassette consisting of E2, E6 and E7 into VSV-GP either at first (HPVp1) or fifth (HPVp5) position in VSV-GP's genome we aimed to analyze the effect of vaccine antigen position and consequently expression level on viral fitness, immunogenicity, and anti-tumoral efficacy in a syngeneic mouse tumor model. HPVp1 expressed higher amounts of HPV antigens compared to HPVp5 in vitro but had a slightly delayed replication kinetic which overall translated into increased HPV-specific T cell responses upon vaccination of mice. Immunization with both vectors protected mice in prophylactic and in therapeutic TC-1 tumor models with HPVp1 being more effective in the prophylactic setting. Taken together, VSV-GP is a promising candidate as therapeutic HPV vaccine and first position of the vaccine antigen in a VSV-derived vector seems to be superior to fifth position.
Detection of HPV infection in urothelial carcinoma using RNAscope: Clinicopathological characterization
Musangile, FY;Matsuzaki, I;Okodo, M;Shirasaki, A;Mikasa, Y;Iwamoto, R;Takahashi, Y;Kojima, F;Murata, SI;
PMID: 34164940 | DOI: 10.1002/cam4.4091
Human papillomavirus (HPV) is a well-established mucosotropic carcinogen, but its impact on urothelial neoplasm is unclear. We aimed to clarify the clinical and pathological features of HPV-related urothelial carcinoma (UC).Tissue samples of 228 cases of UC were obtained from the bladder, upper and lower urinary tract, and metastatic sites to construct a tissue microarray. The samples were analyzed for the presence of HPV by a highly sensitive and specific mRNA in situ hybridization (RISH) technique (RNAscope) with a probe that can detect 18 varieties of high-risk HPV. We also conducted immunohistochemistry (IHC) for a major HPV capsid antibody and DNA-PCR.The HPV detection rates varied among the methods; probably due to low HPV copy numbers in UC tissues and the insufficient specificity and sensitivity of the IHC and PCR assays. The RISH method had the highest accuracy and identified HPV infection in 12 (5.2%) of the cases. The histopathological analysis of the HPV-positive UC showed six cases of usual type UC, five cases of UC with squamous differentiation (UC_SqD), and one case of micropapillary UC. The HPV detection rate was six-fold higher in the cases of UC_SqD than in the other variants of UC (odds ratio [OR] =8.9, p = 0.002). In addition, HPV infection showed a significant association with tumor grade (OR =9.8, p = 0.03) and stage (OR =4.7, p = 0.03) of UC. Moreover, the metastatic rate was higher in HPV-positive than in negative UC (OR =3.4).These data indicate that although the incidence of HPV infection in UC is low, it is significantly associated with squamous differentiation and poor prognosis. Furthermore, our observations show that RNAscope is an ideal method for HPV detection in UC compared with the other standard approaches such as IHC and PCR assays.
Head Neck Pathol. 2018 Nov 29.
Rooper LM, McCuiston AM, Westra WH, Bishop JA.
PMID: 30498968 | DOI: 10.1007/s12105-018-0990-7
SOX10 immunoexpression is increasingly recognized in salivary gland tumors, including but not limited to those with myoepithelial, serous acinar, and intercalated duct differentiation. However, SOX10 expression has not been extensively evaluated in other epithelial tumors that can mimic salivary origin. Basaloid squamous cell carcinoma (SCC) is a unique variant of SCC that shows morphologic overlap with several salivary tumors, including adenoid cystic carcinoma, basal cell adenocarcinoma, and myoepithelial carcinoma. We performed SOX10 immunohistochemistry on 22 basaloid SCCs and 280 non-basaloid SCCs. If tissue was available, we also performed immunohistochemistry for S100 and p16, and in-situ hybridization for high-risk HPV RNA. SOX10 was positive in 13/22 basaloid SCCs (59%), including 5/6 (83%) that were HPV-positive and 6/12 (50%) that were HPV-negative. Only 2/12 basaloid SCC (17%) demonstrated focal S100 expression. All non-basaloid SCCs were SOX10 negative. Frequent positivity for SOX10 in basaloid SCC presents a significant diagnostic pitfall for distinguishing these tumors from various basaloid salivary carcinomas. The preponderance of SOX10 expression in the basaloid variant of HPV-positive SCC also presents a diagnostic challenge in separating it from HPV-related multiphenotypic sinonasal carcinoma. SOX10 may be more broadly considered a marker of basal differentiation and should not be assumed to be specific for salivary origin in epithelial head and neck tumors.
Cell Host Microbe. 2018 Dec 12.
Lee YS, Kim TY, Kim Y, Lee SH, Kim S, Kang SW, Yang JY, Baek IJ, Sung YH, Park YY, Hwang SW, O E, Kim KS, Liu S, Kamada N, Gao N, Kweon MN.
PMID: 30543778 | DOI: 10.1016/j.chom.2018.11.002
Symbionts play an indispensable role in gut homeostasis, but underlying mechanisms remain elusive. To clarify the role of lactic-acid-producing bacteria (LAB) on intestinal stem-cell (ISC)-mediated epithelial development, we fed mice with LAB-type symbionts such as Bifidobacterium and Lactobacillus spp. Here we show that administration of LAB-type symbionts significantly increased expansion of ISCs, Paneth cells, and goblet cells. Lactate stimulated ISC proliferation through Wnt/β-catenin signals of Paneth cells and intestinal stromal cells. Moreover, Lactobacillus plantarum strains lacking lactate dehydrogenase activity, which are deficient in lactate production, elicited less ISC proliferation. Pre-treatment with LAB-type symbionts or lactate protected mice in response to gut injury provoked by combined treatments with radiation and a chemotherapy drug. Impaired ISC-mediated epithelial development was found in mice deficient of the lactate G-protein-coupled receptor, Gpr81. Our results demonstrate that LAB-type symbiont-derived lactate plays a pivotal role in promoting ISC-mediated epithelial development in a Gpr81-dependent manner.
Basham KJ, Rodriguez S, Turcu AF, Lerario AM, Logan CY, Rysztak MR, Gomez-Sanchez CE, Breault DT, Koo BK, Clevers H, Nusse R, Val P, Hammer GD.
PMID: 30692207 | DOI: 10.1101/gad.317412.118
Spatiotemporal control of Wnt signaling is essential for the development and homeostasis of many tissues. The transmembrane E3 ubiquitin ligases ZNRF3 (zinc and ring finger 3) and RNF43 (ring finger protein 43) antagonize Wnt signaling by promoting degradation of frizzled receptors. ZNRF3 and RNF43 are frequently inactivated in human cancer, but the molecular and therapeutic implications remain unclear. Here, we demonstrate that adrenocortical-specific loss of ZNRF3, but not RNF43, results in adrenal hyperplasia that depends on Porcupine-mediated Wnt ligand secretion. Furthermore, we discovered a Wnt/β-catenin signaling gradient in the adrenal cortex that is disrupted upon loss of ZNRF3. Unlike β-catenin gain-of-function models, which induce high Wnt/β-catenin activation and expansion of the peripheral cortex, ZNRF3 loss triggers activation of moderate-level Wnt/β-catenin signaling that drives proliferative expansion of only the histologically and functionally distinct inner cortex. Genetically reducing β-catenin dosage significantly reverses the ZNRF3-deficient phenotype. Thus, homeostatic maintenance of the adrenal cortex is dependent on varying levels of Wnt/β-catenin activation, which is regulated by ZNRF3.