Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (12)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • SARS-CoV-2 (15) Apply SARS-CoV-2 filter
  • Lgr5 (10) Apply Lgr5 filter
  • (-) Remove TBD filter TBD (9)
  • HPV E6/E7 (6) Apply HPV E6/E7 filter
  • MALAT1 (5) Apply MALAT1 filter
  • COL1A1 (5) Apply COL1A1 filter
  • Runx2 (5) Apply Runx2 filter
  • Wnt6 (4) Apply Wnt6 filter
  • CXCL10 (4) Apply CXCL10 filter
  • Wnt2b (4) Apply Wnt2b filter
  • Wnt9b (4) Apply Wnt9b filter
  • OLFM4 (4) Apply OLFM4 filter
  • SHH (4) Apply SHH filter
  • Wnt3 (4) Apply Wnt3 filter
  • ZIKV (4) Apply ZIKV filter
  • V-nCoV2019-S (4) Apply V-nCoV2019-S filter
  • ACTA2 (3) Apply ACTA2 filter
  • Wnt16 (3) Apply Wnt16 filter
  • Wnt4 (3) Apply Wnt4 filter
  • Axin2 (3) Apply Axin2 filter
  • Sox9 (3) Apply Sox9 filter
  • Rspo3 (3) Apply Rspo3 filter
  • Wnt5a (3) Apply Wnt5a filter
  • (-) Remove ESR1 filter ESR1 (3)
  • GLI1 (3) Apply GLI1 filter
  • HOTAIR (3) Apply HOTAIR filter
  • Bmp2 (3) Apply Bmp2 filter
  • Col2a1 (3) Apply Col2a1 filter
  • WNT2 (3) Apply WNT2 filter
  • Ihh (3) Apply Ihh filter
  • HPV-HR18 (3) Apply HPV-HR18 filter
  • Wnt10a (2) Apply Wnt10a filter
  • Wnt10b (2) Apply Wnt10b filter
  • Wnt7a (2) Apply Wnt7a filter
  • MYO10 (2) Apply MYO10 filter
  • Wnt7b (2) Apply Wnt7b filter
  • Dmp1 (2) Apply Dmp1 filter
  • Rspo2 (2) Apply Rspo2 filter
  • CDH1 (2) Apply CDH1 filter
  • HES1 (2) Apply HES1 filter
  • Cpt1a (2) Apply Cpt1a filter
  • Wnt11 (2) Apply Wnt11 filter
  • Wnt3a (2) Apply Wnt3a filter
  • Wnt5b (2) Apply Wnt5b filter
  • Wnt8a (2) Apply Wnt8a filter
  • Wnt8b (2) Apply Wnt8b filter
  • Wnt9a (2) Apply Wnt9a filter
  • LYPD1 (2) Apply LYPD1 filter
  • NOTUM (2) Apply NOTUM filter
  • POLR2A (2) Apply POLR2A filter

Product

  • (-) Remove RNAscope 2.5 HD Brown Assay filter RNAscope 2.5 HD Brown Assay (12)

Research area

  • Cancer (3) Apply Cancer filter
  • Development (2) Apply Development filter
  • Stem Cells (2) Apply Stem Cells filter
  • Cleft Lip (1) Apply Cleft Lip filter
  • Endrocrinology (1) Apply Endrocrinology filter
  • hernia (1) Apply hernia filter
  • Idiopathic Hypereosinophilic Syndrome (1) Apply Idiopathic Hypereosinophilic Syndrome filter
  • Kidney (1) Apply Kidney filter
  • Neuroscience (1) Apply Neuroscience filter
  • Other: Immunology (1) Apply Other: Immunology filter
  • Other: Ophthalmology (1) Apply Other: Ophthalmology filter
  • Other: Transcriptomics (1) Apply Other: Transcriptomics filter
  • Retinal Degeneration (1) Apply Retinal Degeneration filter
  • Urinary Tract (1) Apply Urinary Tract filter
  • Vision loss (1) Apply Vision loss filter

Category

  • Publications (12) Apply Publications filter
Divergent functions of histone acetyltransferases KAT2A and KAT2B in keratinocyte self-renewal and differentiation

Journal of cell science

2023 Jun 15

Walters, BW;Tan, TJ;Tan, CT;Dube, CT;Lee, KT;Koh, J;Ong, YHB;Tan, VXH;Jahan, FRS;Lim, XN;Wan, Y;Lim, CY;
PMID: 37259855 | DOI: 10.1242/jcs.260723

The mammalian epidermis undergoes constant renewal, replenished by a pool of stem cells and terminal differentiation of their progeny. This is accompanied by changes in gene expression and morphology that are orchestrated, in part, by epigenetic modifiers. Here, we define the role of the histone acetyltransferase KAT2A in epidermal homeostasis and provide a comparative analysis that reveals key functional divergence with its paralog KAT2B. In contrast to the reported function of KAT2B in epidermal differentiation, KAT2A supports the undifferentiated state in keratinocytes. RNA-seq analysis of KAT2A- and KAT2B- depleted keratinocytes revealed dysregulated epidermal differentiation. Depletion of KAT2A led to premature expression of epidermal differentiation genes in the absence of inductive signals, whereas loss of KAT2B delayed differentiation. KAT2A acetyltransferase activity was indispensable in regulating epidermal differentiation gene expression. The metazoan-specific N terminus of KAT2A was also required to support its function in keratinocytes. We further showed that the interplay between KAT2A- and KAT2B-mediated regulation was important for normal cutaneous wound healing in vivo. Overall, these findings reveal a distinct mechanism in which keratinocytes use a pair of highly homologous histone acetyltransferases to support divergent functions in self-renewal and differentiation processes.
Spatial Sequencing in a Model of Early Onset Retinal Degeneration

Investigative Ophthalmology & Visual Science

2022 Jan 01

Huffman, K;Sasik, R;Borooah, S;

RESULTS : Uniform Manifold Approximation and Projection clustering identified distinct expression signatures from the ganglion cell layer(GCL), inner nuclear layer(INL), retinal pigment epithelium (RPE)/choroid/sclera, optic nerve, and ciliary body (Fig, 1) but not the outer nuclear layer(ONL) which was contaminated with expression from other layers. Our findings highlight Clu, C4b, Apoe, and C1qa genes (z-score 3.0, 2.4, 2.3, and 2.2) as potential markers of disease in the RPE. Gene Set Enrichment analysis between rd6 and WT eyes showed upregulation of glycolysis and carbon metabolism pathways in the GCL and Rap1, Hippo and lysosome pathways in the RPE/Choroid/sclera. The ribosomal pathway was downregulated in these layers. No significant pathways were found in the INL, ciliary body or optic nerve.
Improved in situ sequencing for high-resolution targeted spatial transcriptomic analysis in tissue sections

Journal of genetics and genomics = Yi chuan xue bao

2023 Feb 14

Tang, X;Chen, J;Zhang, X;Liu, X;Xie, Z;Wei, K;Qiu, J;Ma, W;Lin, C;Ke, R;
PMID: 36796537 | DOI: 10.1016/j.jgg.2023.02.004

Spatial transcriptomics enables the study of localization-indexed gene expression activity in tissues, providing the transcriptional landscape that in turn indicates the potential regulatory networks of gene expression. In situ sequencing (ISS) is a targeted spatial transcriptomic technique, based on padlock probe and rolling circle amplification combined with next-generation sequencing chemistry, for highly multiplexed in situ gene expression profiling. Here, we present improved in situ sequencing (IISS) that exploits a new probing and barcoding approach, combined with advanced image analysis pipelines for high-resolution targeted spatial gene expression profiling. We develop an improved combinatorial probe anchor ligation chemistry using a 2-base encoding strategy for barcode interrogation. The new encoding strategy results in higher signal intensity as well as improved specificity for in situ sequencing, while maintaining a streamlined analysis pipeline for targeted spatial transcriptomics. We show that IISS can be applied to both fresh frozen tissue and formalin-fixed paraffin-embedded tissue sections for single-cell level spatial gene expression analysis, based on which the developmental trajectory and cell-cell communication networks can also be constructed.
β-catenin-driven differentiation is a tissue-specific epigenetic vulnerability in adrenal cancer

Cancer research

2023 May 02

Mohan, DR;Borges, KS;Finco, I;LaPensee, CR;Rege, J;Solon, AL;Little, DW;Else, T;Almeida, MQ;Dang, D;Haggerty-Skeans, J;Apfelbaum, AA;Vinco, M;Wakamatsu, A;Mariani, BMP;Amorim, LC;Latronico, AC;Mendonca, BB;Zerbini, MCN;Lawlor, ER;Ohi, R;Auchus, RJ;Rainey, WE;Marie, SKN;Giordano, TJ;Venneti, S;Fragoso, MCBV;Breault, DT;Lerario, AM;Hammer, GD;
PMID: 37129912 | DOI: 10.1158/0008-5472.CAN-22-2712

Adrenocortical carcinoma (ACC) is a rare cancer in which tissue-specific differentiation is paradoxically associated with dismal outcomes. The differentiated ACC subtype CIMP-high is prevalent, incurable, and routinely fatal. CIMP-high ACC possess abnormal DNA methylation and frequent β-catenin activating mutations. Here, we demonstrated that ACC differentiation is maintained by a balance between nuclear, tissue-specific β-catenin-containing complexes and the epigenome. On chromatin, β-catenin bound master adrenal transcription factor SF1 and hijacked the adrenocortical super-enhancer landscape to maintain differentiation in CIMP-high ACC; off chromatin, β-catenin bound histone methyltransferase EZH2. SF1/β-catenin and EZH2/β-catenin complexes present in normal adrenals persisted through all phases of ACC evolution. Pharmacologic EZH2 inhibition in CIMP-high ACC expelled SF1/β-catenin from chromatin and favored EZH2/β-catenin assembly, erasing differentiation and restraining cancer growth in vitro and in vivo. These studies illustrate how tissue-specific programs shape oncogene selection, surreptitiously encoding targetable therapeutic vulnerabilities.
Acetaminophen (APAP, paracetamol) interferes with the first trimester human fetal ovary development in an ex vivo model

The Journal of clinical endocrinology and metabolism

2022 Feb 11

Lecante, LL;Leverrier-Penna, S;Gicquel, T;Giton, F;Costet, N;Desdoits-Lethimonier, C;Lesné, L;Fromenty, B;Lavoué, V;Rolland, AD;Mazaud-Guittot, S;
PMID: 35147701 | DOI: 10.1210/clinem/dgac080

Acetaminophen (APAP, paracetamol) is widely used by pregnant women. Although long considered safe, growing evidence indicates that APAP is an endocrine disruptor since in utero exposure may be associated with a higher risk of male genital tract abnormalities. In rodents, fetal exposure has long-term effects on the reproductive function of female offspring. Human studies have also suggested harmful APAP exposure effects.Given that disruption of fetal ovarian development may impact women's reproductive health, we investigated the effects of APAP on fetal human ovaries in culture.Human ovarian fragments from 284 fetuses aged 7 to 12 developmental weeks (DW) were cultivated ex vivo for 7 days in the presence of human-relevant concentrations of APAP (10 -8 to 10 -3 M) or vehicle control.Outcomes included examination of postculture tissue morphology, cell viability, apoptosis, and quantification of hormones, APAP and APAP metabolites in conditioned culture media.APAP reduced the total cell number specifically in 10-12 DW ovaries induced cell death and decreased KI67-positive cell density independently of fetal age. APAP targeted sub-populations of germ cells and disrupted human fetal ovarian steroidogenesis, without affecting prostaglandin or inhibin B production. Human fetal ovaries were able to metabolize APAP.Our data indicate that APAP can impact first trimester human fetal ovarian development, especially during a 10-12 DW window of heightened sensitivity. Overall, APAP behaves as an endocrine disruptor in the fetal human ovary.
An estrogen-sensitive fibroblast population drives abdominal muscle fibrosis in an inguinal hernia mouse model

JCI insight

2022 Apr 19

Potluri, T;Taylor, MJ;Stulberg, JJ;Lieber, RL;Zhao, H;Bulun, SE;
PMID: 35439171 | DOI: 10.1172/jci.insight.152011

Greater than 25% of all men develop an inguinal hernia in their lifetime, and more than 20 million inguinal hernia repair surgeries are performed worldwide each year. The mechanisms causing abdominal muscle weakness, the formation of inguinal hernias, or their recurrence are largely unknown. We previously reported that excessively produced estrogen in the lower abdominal muscles (LAMs) triggers extensive LAM fibrosis, leading to hernia formation in a transgenic male mouse model expressing the human aromatase gene (Aromhum). To understand the cellular basis of estrogen-driven muscle fibrosis, we performed single-cell RNA sequencing on LAM tissue from Aromhum and wild-type littermates. We found a fibroblast-like cell group composed of 6 clusters, 2 of which were validated for their enrichment in Aromhum LAM tissue. One of the potentially novel hernia-associated fibroblast clusters in Aromhum was enriched for the estrogen receptor-α gene (Esr1hi). Esr1hi fibroblasts maximally expressed estrogen target genes and seemed to serve as the progenitors of another cluster expressing ECM-altering enzymes (Mmp3hi) and to upregulate expression of proinflammatory, profibrotic genes. The discovery of these 2 potentially novel and unique hernia-associated fibroblasts may lead to the development of novel treatments that can nonsurgically prevent or reverse inguinal hernias.
Resolution of hypereosinophilic syndrome following resection of a schwannoma

The journal of allergy and clinical immunology. In practice

2023 Jan 05

Ware, JM;Folio, LR;Pittaluga, S;Klion, A;Khoury, P;
PMID: 36621605 | DOI: 10.1016/j.jaip.2022.12.028

ASH2L Controls Ureteric Bud Morphogenesis via Regulation of RET/GFRA1 Signaling Activity in a Mouse Model

Journal of the American Society of Nephrology : JASN

2023 Feb 09

Zhao, Z;Dai, X;Jiang, G;Lin, F;
PMID: 36758123 | DOI: 10.1681/ASN.0000000000000099

Ureteric bud induction and branching morphogenesis is fundamental to the establishment of the renal architecture and is a key determinant of nephron number. Defective ureteric bud morphogenesis could give rise to a spectrum of malformations associated with congenital anomalies of the kidney and urinary tract (CAKUT). Signaling involving glial cell line-derived neurotrophic factor and its receptor RET and coreceptor GFRA1 appears to be particularly important in ureteric bud development. Recent epigenome profiling studies have uncovered dynamic changes of histone H3 lysine K4 (H3K4) methylation during metanephros development, and dysregulated H3K4 methylation has been associated with a syndromic human CAKUT.To investigate whether and how inactivation of Ash2l, which encodes a subunit of the COMPASS methyltransferase responsible for genome-wide H3K4 methylation, might contribute to CAKUT, we inactivated Ash2l specifically from the ureteric bud lineage in C57BL/6 mice and examined the effects on genome-wide H3K4 methylation and metanephros development. Genes and epigenome changes potentially involved in these effects were screened using RNA-seq combined with CUT&Tag-seq.Ureteric bud-specific inactivation of Ash2l caused CAKUT-like phenotypes mainly involving renal dysplasia at birth, which were associated with deficient H3K4 trimethylation. Ash2l inactivation slowed proliferation of cells at the ureteric bud tip, delaying budding and impairing ureteric bud branching morphogenesis. These effects were associated with downregulation of Ret, Gfra1, and Wnt11, which participate in RET/GFRA1 signaling.These experiments identify ASH2L-dependent H3K4 methylation in the ureteric bud lineage as an upstream epigenetic regulator of RET/GFRA1 signaling in ureteric bud morphogenesis, which, if deficient, may lead to CAKUT.
Estrogen Receptor-α Quantification in Breast Cancer: Concordance Between Immunohistochemical Assays and mRNA-In Situ Hybridization for ESR1 Gene.

Appl Immunohistochem Mol Morphol.

2019 Mar 27

Thomsen C, Nielsen S, Nielsen BS, Pedersen SH, Vyberg M.
PMID: 30920963 | DOI: 10.1097/PAI.0000000000000760

Immunohistochemical (IHC) quantification of estrogen receptor-α (ER) is used for assessment of treatment regimen in breast cancer. Different ER IHC assays may produce diverging results, because of different antibody clones, protocols, and stainer platforms. Objective tissue-based techniques to assess sensitivity and specificity of IHC assays are therefore needed. We tested the usability of ER mRNA-in situ hybridization (mRNA-ISH) in comparison with assays based on clones SP1 and 6F11. We selected 56 archival specimens according to their reported ER IHC positivity, representing a wide spectrum from negative to strongly positive cases. The specimens were used to prepare 4 TMAs with 112 cores. Serial sections of each TMA were stained for ER and pan-cytokeratin (PCK) by IHC and ESR1 (ER gene) by mRNA-ISH. Digital image analysis (DIA) was used to determine ER IHC H-score. ESR1 mRNA-ISH was scored both manually and by DIA. DIA showed a nonlinear correlation between IHC and ESR1 mRNA-ISH with R-values of 0.80 and 0.78 for the ER antibody clones SP1 and 6F11, respectively. Comparison of manual mRNA-ISH scoring categories and SP1 and 6F11 IHC H-scores showed a highly significant relationship (P<0.001). In conclusion, the study showed good correlation between mRNA-ISH and IHC, suggesting that mRNA-ISH can be a valuable tool in the assessment of the sensitivity and specificity of ER IHC assays.

Inhibin-Positive "Cholangioblastic" Variant of Intrahepatic Cholangiocarcinoma: Report of 3 New Patients With Review of the Literature

International journal of surgical pathology

2023 Apr 18

Bakhshwin, A;Lai, KK;Ammoun, A;Friedman, K;El Hag, M;
PMID: 37073447 | DOI: 10.1177/10668969231157775

Cholangiocarcinoma is the second most common primary liver malignant neoplasm. It usually affects older individuals in their seventh decade of life with no gender predilection. Recently, a distinct subtype of cholangiocarcinoma has emerged with 2 proposed names: "cholangioblastic" and "solid tubulocystic." This variant predominantly occurs in younger women who lack the common risk factors for patients diagnosed with cholangiocarcinomas, such as older age and chronic liver disease or cirrhosis. We describe 3 new patients with a cholangioblastic variant of intrahepatic cholangiocarcinoma. At the time of diagnosis, the patients were aged 19-, 46-, and 28-year-old; 2 females and 1 male (the 46-year-old). None of our patients had a history of chronic liver disease or known predisposing factors for liver tumors. Tumor size ranged from 2.3 to 23 cm in greatest dimension. Histological examination of these tumors demonstrated reproducible morphology characterized by trabecular, nested, and multicystic patterns with micro and macro follicles filled with eosinophilic material. The immunohistochemical profile showed that the tumor cells were positive for keratin 7, inhibin, synaptophysin, and albumin in situ hybridization, while negative for HepPar1, arginase, and INSM1. All tumors lacked conventional intrahepatic cholangiocarcinoma/adenocarcinoma morphology. We also review the literature and emphasize that neuroendocrine tumors should be recognized as a major diagnostic pitfall of this variant.
A Murine Calvarial Defect Model for the Investigation of the Osteogenic Potential of Fetal Umbilical Cord Stem Cells in Alveolar Cleft Repair

Journal of Oral and Maxillofacial Surgery

2022 Sep 01

Stanton, E;Sanchez, J;Kondra, K;Jimenez, C;Urata, M;Hammoudeh, J;
| DOI: 10.1016/j.joms.2022.07.012

Background: The standard graft material for alveolar cleft repair (ACR) is autogenous iliac crest. However, a promising alternative potential graft adjunct - newborn human umbilical cord mesenchymal stem cells (h-UCMSC) - has yet to be explored in vivo. Their capacity for selfrenewal, multipotent differentiation, and proliferation allows h-UCMSC to be harnessed for regenerative medicine. Our study seeks to evaluate the efficacy of using tissue-derived hUCMSC and their osteogenic capabilities in a murine model to improve ACR. Methods: Foxn1 mice were separated into three groups with the following calvarial defects: (1) no-treatment (empty defect; n=6), (2) poly (D,L-lactide-co-glycolide) (PLGA) scaffold (n=6), and (3) h-UCMSC with PLGA (n=4). Bilateral 2-mm diameter parietal bone critical-sized defects were created using a dental drill. Micro-CT imaging occurred at 1, 2, 3, and 4 weeks postoperatively. The mice were euthanized 4 weeks postoperatively for RNAscope analysis, immunohistochemistry, and histology. Results: No mice experienced complications during the follow-up period. Micro-CT and histology demonstrated that the no-treatment (1) and PLGA-only (2) defects remained patent without significant defect size differences across groups. In contrast, the h-UCMSC with PLGA group (3) had significantly greater bone fill on micro-CT and histology. Conclusions: We demonstrate a successful calvarial defect model for the investigation of hUCMSC-mediated osteogenesis and bone repair. Furthermore, evidence reveals that PLGA alone has neither short-term effects on bone formation nor any unwanted side effects, making it an 3 attractive scaffold. Further investigation using h-UCMSC with PLGA in larger animals is warranted to advance future translation to patients requiring ACR. Clinical Relevance Statement: Our results demonstrate a successful murine calvarial defect model for the investigation of h-UCMSC-mediated osteogenesis and bone repair and provide preliminary evidence for the safe and efficacious use of this graft adjunct in alveolar cleft repair.
Neuronal mitochondria transport Pink1 mRNA via synaptojanin 2 to support local mitophagy

Neuron

2022 Feb 19

Harbauer, AB;Hees, JT;Wanderoy, S;Segura, I;Gibbs, W;Cheng, Y;Ordonez, M;Cai, Z;Cartoni, R;Ashrafi, G;Wang, C;Perocchi, F;He, Z;Schwarz, TL;
PMID: 35216662 | DOI: 10.1016/j.neuron.2022.01.035

PTEN-induced kinase 1 (PINK1) is a short-lived protein required for the removal of damaged mitochondria through Parkin translocation and mitophagy. Because the short half-life of PINK1 limits its ability to be trafficked into neurites, local translation is required for this mitophagy pathway to be active far from the soma. The Pink1 transcript is associated and cotransported with neuronal mitochondria. In concert with translation, the mitochondrial outer membrane proteins synaptojanin 2 binding protein (SYNJ2BP) and synaptojanin 2 (SYNJ2) are required for tethering Pink1 mRNA to mitochondria via an RNA-binding domain in SYNJ2. This neuron-specific adaptation for the local translation of PINK1 provides distal mitochondria with a continuous supply of PINK1 for the activation of mitophagy.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?