The Journal of clinical endocrinology and metabolism
Poma, AM;Proietti, A;Macerola, E;Bonuccelli, D;Conti, M;Salvetti, A;Dolo, V;Chillà, A;Basolo, A;Santini, F;Toniolo, A;Basolo, F;
PMID: 35567590 | DOI: 10.1210/clinem/dgac312
Involvement of the pituitary gland in SARS-CoV-2 infection has been clinically suggested by pituitary hormone deficiency in severe COVID-19 cases, by altered serum ACTH levels in hospitalized patients, and by cases of pituitary apoplexy. However, the direct viral infection of the gland has not been investigated.To evaluate whether the SARS-CoV-2 genome and antigens could be present in pituitary glands of lethal cases of COVID-19, and to assess possible changes in the expression of immune-related and pituitary-specific genes.SARS-CoV-2 genome and antigens were searched in the pituitary gland of 23 patients who died from COVID-19 and, as controls, in 12 subjects who died from trauma or sudden cardiac death. Real-time RT-PCR, in situ hybridization, immunohistochemistry and transmission electron microscopy were utilized. Levels of mRNA transcripts of immune-related and pituitary-specific genes were measured by the nCounter assay.The SARS-CoV-2 genome and antigens were detected in 14/23 (61%) pituitary glands of the COVID-19 group, not in controls. In SARS-CoV-2 positive pituitaries, the viral genome was consistently detected by PCR in the adeno- and the neurohypophysis. Immunohistochemistry, in situ hybridization and transmission electron microscopy confirmed the presence of SARS-CoV-2 in the pituitary. Activation of type I interferon signaling and enhanced levels of neutrophil and cytotoxic cell scores were found in virus-positive glands. mRNA transcripts of pituitary hormones and pituitary developmental/regulatory genes were suppressed in all COVID-19 cases irrespective of virus-positivity.Our study supports the tropism of SARS-CoV-2 for human pituitary and encourage to explore pituitary dysfunction post-COVID-19.
Protein arginine methyltransferase 1 regulates cell proliferation and differentiation in adult mouse adult intestine
Xue, L;Bao, L;Roediger, J;Su, Y;Shi, B;Shi, YB;
PMID: 34158114 | DOI: 10.1186/s13578-021-00627-z
Adult stem cells play an essential role in adult organ physiology and tissue repair and regeneration. While much has been learnt about the property and function of various adult stem cells, the mechanisms of their development remain poorly understood in mammals. Earlier studies suggest that the formation of adult mouse intestinal stem cells takes place during the first few weeks after birth, the postembryonic period when plasma thyroid hormone (T3) levels are high. Furthermore, deficiency in T3 signaling leads to defects in adult mouse intestine, including reduced cell proliferation in the intestinal crypts, where stem cells reside. Our earlier studies have shown that protein arginine methyltransferase 1 (PRMT1), a T3 receptor coactivator, is highly expressed during intestinal maturation in mouse.We have analyzed the expression of PRMT1 by immunohistochemistry and studied the effect of tissue-specific knockout of PRMT1 in the intestinal epithelium.We show that PRMT1 is expressed highly in the proliferating transit amplifying cells and crypt base stem cells. By using a conditional knockout mouse line, we have demonstrated that the expression of PRMT1 in the intestinal epithelium is critical for the development of the adult mouse intestine. Specific removal of PRMT1 in the intestinal epithelium results in, surprisingly, more elongated adult intestinal crypts with increased cell proliferation. In addition, epithelial cell migration along the crypt-villus axis and cell death on the villus are also increased. Furthermore, there are increased Goblet cells and reduced Paneth cells in the crypt while the number of crypt base stem cells remains unchanged.Our finding that PRMT1 knockout increases cell proliferation is surprising considering the role of PRMT1 in T3-signaling and the importance of T3 for intestinal development, and suggests that PRMT1 likely regulates pathways in addition to T3-signaling to affect intestinal development and/or homeostasis, thus affecting cell proliferating and epithelial turn over in the adult.
Nakajima T, Uehara T, Iwaya M, Kobayashi Y, Maruyama Y, Ota H
PMID: 32293346 | DOI: 10.1186/s12885-020-06791-8
BACKGROUND:
Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) is a promising intestinal stem cell and carcinoma stem cell marker. We examined the relationship between mismatch repair (MMR) protein deficiency and LGR5 expression in poorly differentiated (PD) colorectal carcinoma (CRC).
METHODS:
In 29 cases of PD-CRC, deficiencies in MMR proteins (MLH1, PMS2, MSH2, MSH6) and ?-catenin expression were identified by immunohistochemistry (IHC). LGR5 expression was examined by the RNAscope assay in tissue microarrays.
RESULTS:
LGR5 H-scores in MMR-deficient (MMR-D) cases were significantly lower than those in MMR-proficient (MMR-P) cases (P?=?0.0033). Nuclear ?-catenin IHC scores in MMR-D cases were significantly lower than those in MMR-P cases (P?=?0.0024). In all cases, there was a positive correlation between LGR5 H-score and nuclear ?-catenin IHC score (r?=?0.6796, P?0.001). Even in MMR-D and MMR-P cases, there was a positive correlation between LGR5 H-score and nuclear ?-catenin IHC score (r?=?0.7180, P?0.0085 and r?=?0.6574, P?0.003, respectively). MMR-D CRC cases showed low expression of LGR5, which may be due to low activation of the Wnt/?-catenin signaling pathway.
CONCLUSIONS:
Our results reveal the relationship between LGR5 expression and MMR protein profiles in PD-CRC. A further study is warranted to confirm these findings.
Winkler, ES;Chen, RE;Alam, F;Yildiz, S;Case, JB;Uccellini, MB;Holtzman, MJ;Garcia-Sastre, A;Schotsaert, M;Diamond, MS;
PMID: 34668780 | DOI: 10.1128/JVI.01511-21
The development of mouse models for COVID-19 has enabled testing of vaccines and therapeutics and defining aspects of SARS-CoV-2 pathogenesis. SARS-CoV-2 disease is severe in K18 transgenic mice (K18-hACE2-Tg) expressing human ACE2 (hACE2), the SARS-CoV-2 receptor, under an ectopic cytokeratin promoter, with high levels of infection measured in the lung and brain. Here, we evaluated SARS-CoV-2 infection in hACE2 KI mice that express hACE2 under an endogenous promoter in place of murine ACE2 (mACE2). Intranasal inoculation of hACE2 KI mice with SARS-CoV-2 WA1/2020 resulted in substantial viral replication within the upper and lower respiratory tracts with limited spread to extra-pulmonary organs. However, SARS-CoV-2-infected hACE2 KI mice did not lose weight and developed limited pathology. Moreover, no significant differences in viral burden were observed in hACE2 KI mice infected with B.1.1.7 or B.1.351 variants compared to WA1/2020 strain. Because the entry mechanisms of SARS-CoV-2 in mice remains uncertain, we evaluated the impact of the naturally-occurring, mouse-adapting N501Y mutation by comparing infection of hACE2 KI, K18-hACE2-Tg, ACE2-deficient, and wild-type C57BL/6 mice. The N501Y mutation minimally affected SARS-CoV-2 infection in hACE2 KI mice but was required for viral replication in wild-type C57BL/6 mice in a mACE2-dependent manner and augmented pathogenesis in the K18-hACE2 Tg mice. Thus, the N501Y mutation likely enhances interactions with mACE2 or hACE2 in vivo. Overall, our study highlights the hACE2 KI mice as a model of mild SARS-CoV-2 infection and disease and clarifies the requirement of the N501Y mutation in mice. IMPORTANCE Mouse models of SARS-CoV-2 pathogenesis have facilitated the rapid evaluation of countermeasures. While the first generation of models developed pneumonia and severe disease after SARS-CoV-2 infection, they relied on ectopic expression of supraphysiological levels of human ACE2 (hACE2). This has raised issues with their relevance to humans as the hACE2 receptor shows a more restricted expression pattern in the respiratory tract. Here we evaluated SARS-CoV-2 infection and disease with viruses containing or lacking a key mouse-adapting mutation in the spike gene in hACE2 KI mice, which express hACE2 under an endogenous promoter in place of murine ACE2. While infection of hACE2 KI mice with multiple strains of SARS-CoV-2 including variants of concern resulted in viral replication within the upper and lower respiratory tracts, the animals did not sustain severe lung injury. Thus, hACE2 KI mice serve as a model of mild infection with both ancestral and emerging SARS-CoV-2 variant strains.
Bao L, Rodiger J, Park S, Fu L, Shi B, Cheng SY, Shi YB.
PMID: 30595106 | DOI: 10.1089/thy.2018.0340
Abstract BACKGROUND: Thyroid hormone (T3) is critical for vertebrate development and affects the function of many adult tissues and organs. Its genomic effects are mediated by thyroid hormone nuclear receptors (TRs) present in all vertebrates. The discovery of patients with resistance to thyroid hormone (RTHβ) over 50 years ago and subsequent identification of the genetic mutations only in the THRB gene in these patients suggest that mutations in the THRA gene may have different pathological manifestations in humans. Indeed, the recent discovery of a number of human patients carrying heterozygous mutations in the THRA gene (RTHα) revealed a distinct phenotype that was not observed in the RTH patients with THRB gene mutations (RTHβ). That is, the RTHα patients had constipations, implicating intestinal defects caused by THRA gene mutations. METHODS: To determine how TRα1 mutations affect intestine, we have analyzed a mutant mouse expressing a strong dominantly negative TRα1 mutant, (denoted TRα1PV; Thra1PV mice). This mutant mouse faithfully reproduces RTHα phenotypes as observed in patients. RESULTS: In adult Thra1PV/+ mice, we observed constipation just like in patients with TRα mutations. Importantly, we discovered significant intestinal defects, including shorter villi, increased differentiated cells in the crypt, accompanied by reduced stem cell proliferation in the intestine. CONCLUSION: Our findings suggest that further analysis of this mouse model should help reveal the molecular and physiological defects in the intestine caused by TRα mutations and to determine the underlying mechanisms.
Pathogens (Basel, Switzerland)
Magalhães, AC;Ricardo, S;Moreira, AC;Nunes, M;Tavares, M;Pinto, RJ;Gomes, MS;Pereira, L;
PMID: 35335638 | DOI: 10.3390/pathogens11030313
The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has forced the scientific community to acquire knowledge in real-time, when total lockdowns and the interruption of flights severely limited access to reagents as the global pandemic became established. This unique reality made researchers aware of the importance of designing efficient in vitro set-ups to evaluate infectious kinetics. Here, we propose a histology-based method to evaluate infection kinetics grounded in cell microarray (CMA) construction, immunocytochemistry and in situ hybridization techniques. We demonstrate that the chip-like organization of the InfectionCMA has several advantages, allowing side-by-side comparisons between diverse cell lines, infection time points, and biomarker expression and cytolocalization evaluation in the same slide. In addition, this methodology has the potential to be easily adapted for drug screening.
van Neerven, SM;Smit, WL;van Driel, MS;Kakkar, V;de Groot, NE;Nijman, LE;Elbers, CC;Léveillé, N;Heijmans, J;Vermeulen, L;
PMID: 36321561 | DOI: 10.15252/emmm.202216194
The majority of colorectal cancers (CRCs) present with early mutations in tumor suppressor gene APC. APC mutations result in oncogenic activation of the Wnt pathway, which is associated with hyperproliferation, cytoskeletal remodeling, and a global increase in mRNA translation. To compensate for the increased biosynthetic demand, cancer cells critically depend on protein chaperones to maintain proteostasis, although their function in CRC remains largely unexplored. In order to investigate the role of molecular chaperones in driving CRC initiation, we captured the transcriptomic profiles of murine wild type and Apc-mutant organoids during active transformation. We discovered a strong transcriptional upregulation of Hspb1, which encodes small heat shock protein 25 (HSP25). We reveal an indispensable role for HSP25 in facilitating Apc-driven transformation, using both in vitro organoid cultures and mouse models, and demonstrate that chemical inhibition of HSP25 using brivudine reduces the development of premalignant adenomas. These findings uncover a hitherto unknown vulnerability in intestinal transformation that could be exploited for the development of chemopreventive strategies in high-risk individuals.
SARS-CoV-2 infection in the mouse olfactory system
Ye, Q;Zhou, J;He, Q;Li, RT;Yang, G;Zhang, Y;Wu, SJ;Chen, Q;Shi, JH;Zhang, RR;Zhu, HM;Qiu, HY;Zhang, T;Deng, YQ;Li, XF;Liu, JF;Xu, P;Yang, X;Qin, CF;
PMID: 34230457 | DOI: 10.1038/s41421-021-00290-1
SARS-CoV-2 infection causes a wide spectrum of clinical manifestations in humans, and olfactory dysfunction is one of the most predictive and common symptoms in COVID-19 patients. However, the underlying mechanism by which SARS-CoV-2 infection leads to olfactory disorders remains elusive. Herein, we demonstrate that intranasal inoculation with SARS-CoV-2 induces robust viral replication in the olfactory epithelium (OE), not the olfactory bulb (OB), resulting in transient olfactory dysfunction in humanized ACE2 (hACE2) mice. The sustentacular cells and Bowman's gland cells in the OE were identified as the major target cells of SARS-CoV-2 before invasion into olfactory sensory neurons (OSNs). Remarkably, SARS-CoV-2 infection triggers massive cell death and immune cell infiltration and directly impairs the uniformity of the OE structure. Combined transcriptomic and quantitative proteomic analyses revealed the induction of antiviral and inflammatory responses, as well as the downregulation of olfactory receptor (OR) genes in the OE from the infected animals. Overall, our mouse model recapitulates olfactory dysfunction in COVID-19 patients and provides critical clues for understanding the physiological basis for extrapulmonary manifestations of COVID-19.
Pathogens (Basel, Switzerland)
Valyi-Nagy, T;Fredericks, B;Wilson, J;Shukla, SD;Setty, S;Slavin, KV;Valyi-Nagy, K;
PMID: 37375462 | DOI: 10.3390/pathogens12060772
The mechanisms by which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may spread to the human brain are poorly understood, and the infection of cancer cells in the brain by SARS-CoV-2 in Coronavirus disease 2019 (COVID-19) patients has been the subject of only one previous case report. Here, we report the detection of SARS-CoV-2 RNA by in situ hybridization in lung-cancer cells metastatic to the brain and adjacent brain parenchyma in a 63-year-old male patient with COVID-19. These findings suggest that metastatic tumors may transport the virus from other parts of the body to the brain or may break down the blood-brain barrier to allow for the virus to spread to the brain. These findings confirm and extend previous observations that cancer cells in the brain can become infected by SARS-CoV-2 in patients with COVID-19 and raise the possibility that SARS-CoV-2 can have a direct effect on cancer growth and outcome.
Translation initiation factor eIF2Bε promotes Wnt-mediated clonogenicity and global translation in intestinal epithelial cells
Smit, WL;de Boer, RJ;Meijer, BJ;Spaan, CN;van Roest, M;Koelink, PJ;Koster, J;Dekker, E;Abbink, TEM;van der Knaap, MS;van den Brink, GR;Muncan, V;Heijmans, J;
PMID: 34399164 | DOI: 10.1016/j.scr.2021.102499
Modulation of global mRNA translation, which is essential for intestinal stem cell function, is controlled by Wnt signaling. Loss of tumor supressor APC in stem cells drives adenoma formation through hyperactivion of Wnt signaling and dysregulated translational control. It is unclear whether factors that coordinate global translation in the intestinal epithelium are needed for APC-driven malignant transformation. Here we identified nucleotide exchange factor eIF2Bε as a translation initiation factor involved in Wnt-mediated intestinal epithelial stemness. Using eIF2BεArg191His mice with a homozygous point mutation that leads to dysfunction in the enzymatic activity, we demonstrate that eIF2Bε is involved in small intestinal crypt formation, stemness marker expression, and secreted Paneth cell-derived granule formation. Wnt hyperactivation in ex vivo eIF2BεArg191His organoids, using a GSK3β inhibitor to mimic Apc driven transformation, shows that eIF2Bε is essential for Wnt-mediated clonogenicity and associated increase of the global translational capacity. Finally, we observe high eIF2Bε expression in human colonic adenoma tissues, exposing eIF2Bε as a potential target of CRC stem cells with aberrant Wnt signaling.
Gao, C;Ge, H;Kuan, SF;Cai, C;Lu, X;Esni, F;Schoen, R;Wang, J;Chu, E;Hu, J;
PMID: 36778401 | DOI: 10.21203/rs.3.rs-2531119/v1
BRAFV600E mutation is a driver mutation in the serrated pathway to colorectal cancers. BRAFV600E drives tumorigenesis through constitutive downstream extracellular signal-regulated kinase (ERK) activation, but high-intensity ERK activation can also trigger tumor suppression. Whether and how oncogenic ERK signaling can be intrinsically adjusted to a "just-right" level optimal for tumorigenesis remains undetermined. In this study, we found that FAK (Focal adhesion kinase) expression was reduced in BRAFV600E-mutant adenomas/polyps in mice and patients. In Vill-Cre;BRAFV600E/+;Fakfl/fl mice, Fak deletion maximized BRAFV600E's oncogenic activity and increased cecal tumor incidence to 100%. Mechanistically, our results showed that Fak loss, without jeopardizing BRAFV600E-induced ERK pathway transcriptional output, reduced EGFR (epidermal growth factor receptor)-dependent ERK phosphorylation. Reduction in ERK phosphorylation resulted in increased mRNA expression and stability of Lgr4, promoting intestinal stemness and cecal tumor formation. Together, our findings show that a "just-right" ERK signaling optimal for BRAFV600E-induced cecal tumor formation can be achieved via Fak loss-mediated downregulation of ERK phosphorylation.
American Journal of Transplantation
Saharia, KK;Ramelli, SC;Stein, SR;Roder, AE;
| DOI: 10.1016/j.ajt.2022.09.001
Although the risk of SARS-CoV-2 transmission through lung transplantation from acutely infected donors is high, the risks of virus transmission and long-term lung allograft outcomes are not as well described when using pulmonary organs from COVID-19-recovered donors. We describe successful lung transplantation for a COVID-19-related lung injury using lungs from a COVID-19-recovered donor who was retrospectively found to have detectable genomic SARS-CoV-2 RNA in the lung tissue by multiple highly sensitive assays. However, SARS-CoV-2 subgenomic RNA (sgRNA), a marker of viral replication, was not detectable in the donor respiratory tissues. One year after lung transplantation, the recipient has a good functional status, walking 1 mile several times per week without the need for supplemental oxygen and without any evidence of donor-derived SARS-CoV-2 transmission. Our findings highlight the limitations of current clinical laboratory diagnostic assays in detecting the persistence of SARS-CoV-2 RNA in the lung tissue. The persistence of SARS-CoV-2 RNA in the donor tissue did not appear to represent active viral replication via sgRNA testing and, most importantly, did not negatively impact the allograft outcome in the first year after lung transplantation. sgRNA is easily performed and may be a useful assay for assessing viral infectivity in organs from donors with a recent infection.