ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Neuro Oncol.
2018 Mar 02
Coy S, Rashid R, Lin JR, Du Z, Donson AM, Hankinson TC, Foreman NK, Manley PE, Kieran MW, Reardon DA, Sorger PK, Santagata S.
PMID: 29509940 | DOI: 10.1093/neuonc/noy035
Abstract
BACKGROUND:
Craniopharyngiomas are neoplasms of the sellar/parasellar region that are classified into adamantinomatous (ACP) and papillary (PCP) subtypes. Surgical resection of craniopharyngiomas is challenging, and recurrence is common, frequently leading to profound morbidity. BRAF V600E mutations render PCP susceptible to BRAF/MEK inhibitors, but effective targeted therapies are needed for ACP. We explored the feasibility of targeting the PD-1/PD-L1 immune checkpoint pathway in ACP and PCP.
METHODS:
We mapped and quantified PD-L1 and PD-1 expression in ACP and PCP resections using immunohistochemistry, immunofluorescence, and RNA in situ hybridization. We used tissue-based cyclic immunofluorescence (t-CyCIF) to map the spatial distribution of immune cells and characterize cell cycle and signaling pathways in ACP tumor cells which intrinsically express PD-1.
RESULTS:
All ACP (15±14% of cells, n=23, average±S.D.) and PCP (35±22% of cells, n=18) resections expressed PD-L1. In ACP, PD-L1 was predominantly expressed by tumor cells comprising the cyst-lining. In PCP, PD-L1 was highly-expressed by tumor cells surrounding the stromal fibrovascular cores. ACP also exhibited tumor cell-intrinsic PD-1 expression in whorled epithelial cells with nuclear-localized beta-catenin. These cells exhibited evidence of elevated mTOR and MAPK signaling. Profiling of immune populations in ACP and PCP showed a modest density of CD8+ T-cells.
CONCLUSIONS:
ACP exhibit PD-L1 expression in the tumor cyst-lining and intrinsic PD-1 expression in cells proposed to comprise an oncogenic stem-like population. In PCP, proliferative tumor cells express PD-L1 in a continuous band at the stromal-epithelial interface. Targeting PD-L1 and/or PD-1 in both subtypes of craniopharyngioma might therefore be an effective therapeutic strategy.
Oncotarget. 2014 Dec 31.
Du Z, Abedalthagafi M, Aizer AA, McHenry AR, Sun HH, Bray MA, Viramontes O, Machaidze R, Brastianos PK, Reardon DA, Dunn IF, Freeman GJ, Ligon KL, Carpenter AE, Alexander BM, Agar NY, Rodig SJ, Bradshaw EM, Santagata S
PMID: 25609200
Oncotarget.
2016 May 15
Yuan J, Zhang J, Zhu Y, Li N, Tian T, Li Y, Li Y, Li Z, Lai Y, Gao J, Shen L.
PMID: 27191996 | DOI: 10.18632/oncotarget.9381
PD-L1 expression may be a predictive marker for anti-PD-1 therapeutic efficacy. No standard detection method of PD-L1 expression was available for advanced gastric cancer (AGC), which would be investigated in this study using RNA in situ hybridization and immunohistochemistry. Patients (N = 165) with AGC treated at Peking University Cancer Hospital from October 2008 to February 2013 were retrospectively studied. Tissue samples prior to chemotherapy were assessed for PD-L1 expression using RNA in situ hybridization (an RNAscope assay) and immunohistochemistry (IHC). The correlations of PD-L1 expression to patient characteristics and clinical outcomes were statistically analyzed. PD-L1 mRNA signals were located in tumor compartments or the mesenchyme in a brown dotted or clustered pattern, and PD-L1 mRNA expression in gastric cancer was heterogeneous. PD-L1-positive expressions were observed in 33.9% (56/165) and 35.1% (46/131) patients in mRNA level and protein level, respectively. A positive relationship was found between PD-L1 mRNA and PD-L1 protein, and compared to IHC, RNAscope assay could provide an intuitional and quantitative data with potential clinical application. No statistically significant differences occurred between PD-L1 expression and clinical response to chemotherapy, or survival. However, we found that PD-L1 expression was higher in intestinal type than in diffuse type. These findings suggested that the RNAscope assay may be a promising method for patient assessment in gastric cancer clinical trials, which would be illustrated in further study.
J Pathol.
2017 Sep 09
Baena-Del Valle JA, Zheng Q, Esopi DM, Rubenstein M, Hubbard GK, Moncaliano MC, Hruszkewycz A, Vaghasia A, Yegnasubramanian S, Wheelan SJ, Meeker AK, Heaphy CM, Graham MK, De Marzo AM.
PMID: 28888037 | DOI: 10.1002/path.4980
Telomerase consists of at least two essential elements, an RNA component hTR or TERC that contains the template for telomere DNA addition, and a catalytic reverse transcriptase (TERT). While expression of TERT has been considered the key rate limiting component for telomerase activity, increasing evidence suggests an important role for the regulation of TERC in telomere maintenance and perhaps other functions in human cancer. By using three orthogonal methods including RNAseq, RT-qPCR, and an analytically validated chromogenic RNA in situ hybridization assay, we report consistent overexpression of TERC in prostate cancer. This overexpression occurs at the precursor stage (e.g. high grade prostatic intraepithelial neoplasia or PIN), and persists throughout all stages of disease progression. Levels of TERC correlate with levels of MYC (a known driver of prostate cancer) in clinical samples and we also show the following: forced reductions of MYC result in decreased TERC levels in 8 cancer cell lines (prostate, lung, breast, and colorectal); forced overexpression of MYC in PCa cell lines, and in the mouse prostate, results in increased TERC levels; human TERC promoter activity is decreased after MYC silencing; and MYC occupies the TERC locus as assessed by chromatin immunoprecipitation (ChIP). Finally, we show that knockdown of TERC by siRNA results in reduced proliferation of prostate cancer cell lines. These studies indicate that TERC is consistently overexpressed in all stages of prostatic adenocarcinoma, and its expression is regulated by MYC. These findings nominate TERC as a novel prostate cancer biomarker and therapeutic target.
Oncotarget.
2017 Dec 12
Terranova-Barberio M, Thomas S, Ali N, Pawlowska N, Park J, Krings G, Rosenblum MD, Budillon A, Munster PN.
PMID: - | DOI: 10.18632/oncotarget.23169
ABSTRACT
Triple-negative breast cancer (TNBC) represents a more aggressive and difficult subtype of breast cancer where responses to chemotherapy occur, but toxicity is significant and resistance often follows. Immunotherapy has shown promising results in various types of cancer, including breast cancer. Here, we investigated a new combination strategy where histone deacetylase inhibitors (HDACi) are applied with immune checkpoint inhibitors to improve immunotherapy responses in TNBC.
Testing different epigenetic modifiers, we focused on the mechanisms underlying HDACi as priming modulators of immunotherapy. Tumor cells were co-cultured with human peripheral blood mononuclear cells (PBMCs) and flow cytometric immunophenotyping was performed to define the role of epigenetic priming in promoting tumor antigen presentation and immune cell activation. We found that HDACi up-regulate PD-L1 mRNA and protein expression in a time-dependent manner in TNBC cells, but not in hormone responsive cells. Focusing on TNBC, HDACi up-regulated PD-L1 and HLA-DR on tumor cells when co-cultured with PBMCs and down-regulated CD4+ Foxp3+ Treg in vitro. HDACi significantly enhanced the in vivo response to PD-1/CTLA-4 blockade in the triple-negative 4T1 breast cancer mouse model, the only currently available experimental system with functional resemblance to human TNBC. This resulted in a significant decrease in tumor growth and increased survival, associated with increased T cell tumor infiltration and a reduction in CD4+Foxp3+ T cells in the tumor microenvironment. Overall, our results suggest a novel role for HDAC inhibition in combination with immune checkpoint inhibitors and identify a promising therapeutic strategy, supporting its further clinical evaluation for TNBC treatment.
Sci Rep.
2017 Apr 07
Shi X, Wu S, Sun J, Liu Y, Zeng X, Liang Z.
PMID: 28387300 | DOI: 10.1038/srep46209
Lung adenosquamous cell carcinomas (ASCs) is a rare variant of NSCLC with a poorer prognosis and fewer treatment option than the more common variants. PD-L1 expression is reported to be the predictor of clinical response in trials of NSCLC. In our study, PD-L1 expression was evaluated via immunohistochemistry using a specific monoclonal antibody (SP263), and PD-L1 mRNA expression was evaluated via in situ hybridization. This study included 51 ASCs, 133 lung adenocarcinomas, and 83 lung squamous cell carcinomas (SCC). Similar results were obtained for PD-L1 expression measured at the mRNA and protein level (k coefficient, 0.851, P = 1.000). PD-L1 expression was significantly higher in the squamous versus glandular component of the 36 ASCs in which the components were analyzed separately. The PD-L1 expression rate was similar in the squamous cell component of ASCs and lung SCC (38.89% vs. 28.92%, P = 0.293), so does the adenocarcinoma component of ASCs and lung adenocarcinomas (11.11% vs 13.53%, P = 1.000). PD-L1 expression correlated significantly with lymphovascular invasion (P = 0.016), but not with EGFR, KRAS, and ALK mutations in lung ASCs. Anit-PD-L1 is a promising treatment option in lung ASC cases in which PD-L1 upregulated and EGFR mutations are present.
Pathology (2018)
2018 Oct 30
Xue T, Wang WG, Zhou XY, Li XQ.
PMID: - | DOI: 10.1016/j.pathol.2018.08.011
Springerplus.
2016 Jun 21
Guo L, Li W, Zhu X, Ling Y, Qiu T, Dong L, Fang Y, Yang H, Ying J.
PMID: 27390646 | DOI: 10.1186/s40064-016-2513-x
Cancer Genetics (2015).
Abedalthagafi MS, Wenya Linda Bi WL, Merrill PH, Gibson WJ, Rose MF, Du Z, Francis JM, Du R, Dunn IF, Ligon AH, Beroukhim R, Santagata S.
PMID: 25963524 | DOI: 10.1016/j.cancergen.2015.03.005
Oncotarget
2017 Jan 27
Wu S, Shi X, Sun J, Liu Y, Luo Y, Liang Z, Wang J, Zeng X.
PMID: 28145884 | DOI: 10.18632/oncotarget.14851
Nature.
2018 Apr 04
Lin S, Nascimento EM, Gajera CR, Chen L, Neuhöfer P, Garbuzov A, Wang S, Artandi SE.
PMID: 29618815 | DOI: 10.1038/s41586-018-0004-7
Hepatocytes are replenished gradually during homeostasis and robustly after liver injury1, 2. In adults, new hepatocytes originate from the existing hepatocyte pool3-8, but the cellular source of renewing hepatocytes remains unclear. Telomerase is expressed in many stem cell populations, and mutations in telomerase pathway genes have been linked to liver diseases9-11. Here we identify a subset of hepatocytes that expresses high levels of telomerase and show that this hepatocyte subset repopulates the liver during homeostasis and injury. Using lineage tracing from the telomerase reverse transcriptase (Tert) locus in mice, we demonstrate that rare hepatocytes with high telomerase expression (TERTHigh hepatocytes) are distributed throughout the liver lobule. During homeostasis, these cells regenerate hepatocytes in all lobular zones, and both self-renew and differentiate to yield expanding hepatocyte clones that eventually dominate the liver. In response to injury, the repopulating activity of TERTHigh hepatocytes is accelerated and their progeny cross zonal boundaries. RNA sequencing shows that metabolic genes are downregulated in TERTHigh hepatocytes, indicating that metabolic activity and repopulating activity may be segregated within the hepatocyte lineage. Genetic ablation of TERTHigh hepatocytes combined with chemical injury causes a marked increase in stellate cell activation and fibrosis. These results provide support for a 'distributed model' of hepatocyte renewal in which a subset of hepatocytes dispersed throughout the lobule clonally expands to maintain liver mass.
Oncotarget.
2016 Sep 15
Mei Y, Bi WL, Greenwald NF, Du Z, Agar NY, Kaiser UB, Woodmansee WW, Reardon DA, Freeman GJ, Fecci PE, Laws ER Jr, Santagata S, Dunn GP, Dunn IF.
PMID: 27655724 | DOI: 10.18632/oncotarget.12088
Abstract
PURPOSE:
Subsets of pituitary tumors exhibit an aggressive clinical courses and recur despite surgery, radiation, and chemotherapy. Because modulation of the immune response through inhibition of T-cell checkpoints has led to durable clinical responses in multiple malignancies, we explored whether pituitary adenomas express immune-related biomarkers that could suggest suitability for immunotherapy. Specifically, programmed death ligand 1 (PD-L1) has emerged as a potential biomarker whose expression may portend more favorable responses to immune checkpoint blockade therapies. We thus investigated the expression of PD-L1 in pituitary adenomas.
METHODS:
PD-L1 RNA and protein expression were evaluated in 48 pituitary tumors, including functioning and non-functioning adenomas as well as atypical and recurrent tumors. Tumor infiltrating lymphocyte populations were also assessed by immunohistochemistry.
RESULTS:
Pituitary tumors express variable levels of PD-L1 transcript and protein. PD-L1 RNA and protein expression were significantly increased in functioning (growth hormone and prolactin-expressing) pituitary adenomas compared to non-functioning (null cell and silent gonadotroph) adenomas. Moreover, primary pituitary adenomas harbored higher levels of PD-L1 mRNA compared to recurrent tumors. Tumor infiltrating lymphocytes were observed in all pituitary tumors and were positively correlated with increased PD-L1 expression, particularly in the functional subtypes.
CONCLUSIONS:
Human pituitary adenomas harbor PD-L1 across subtypes, with significantly higher expression in functioning adenomas compared to non-functioning adenomas. This expression is accompanied by the presence of tumor infiltrating lymphocytes. These findings suggest the existence of an immune response to pituitary tumors and raise the possibility of considering checkpoint blockade immunotherapy in cases refractory to conventional management.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com