ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Human Pathology
2017 May 10
Ronen S, Abbott DW, Kravtsov O, Abdelkader A, Xub Y, Banerjee A, Iczkowski KA.
PMID: - | DOI: 10.1016/j.humpath.2017.04.024
The presence and extent of cribriform pattern of prostate cancer portend recurrence and cancer death. Therelative expressions within this morphology of the prognostically adverse loss of PTEN, and the downstream inactivation of cell cycle inhibitor p27/Kip1 had been uncertain. In this study, we examined 52 cases of cribriform cancer by immunohistochemistry (IHC) for PTEN, p27, and CD44 variant (v)7/8, and a subset of 17 casesby chromogenic in situ hybridization (ISH) using probe for PTEN or CDKN1B (gene for p27). The fractions of epithelial pixels positive by IHC and ISH were digitally assessed for benign acini, high grade prostatic intraepithelial neoplasia (PIN), and 8 morphological patterns of cancer. Immunostaining results demonstrated that: 1. PTEN loss was significant for fused small acini, cribriform-central cells, small cribriform acini, and Gleason grade 5 cells in comparison with other acini. 2. p27 loss was significant only for cribriform-peripheral cells; and borderline-significant for fused small acini in comparison with benign acini. 3. CD44v7/8 showed expression loss in cribriform-peripheral cells; other comparisons were not significant. ISH showed thatcribriform cancer had significant PTEN loss normalized to benign acini (P < .02), while Gleason 3 cancer or fused small acini did not. With CDKN1B, the degree of signal loss among various cancer morphologies was insignificant. In conclusion, molecular disparities emerged between the fused small acini and cribriform patterns of Gleason 4 cancer. PTEN or p27 loss as prognostic factors demand distinct assessment in the varieties of Gleason 4 cancer, and in the biphenotypic peripheral versus central populations in cribriform structures.
American Journal of Clinical Pathology
2017 Oct 09
Baena-Del Valle JA, Zheng Q, Hicks JL, Trock HFBJ, Morrissey C, Corey E, Cornish TC, Sfanos KS, De Marzo AM.
PMID: - | DOI: 10.1093/ajcp/aqx094
Abstract
Objectives
Recent commercialization of methods for in situ hybridization using Z-pair probe/branched DNA amplification has led to increasing adoption of this technology for interrogating RNA expression in formalin-fixed, paraffin-embedded (FFPE) tissues. Current practice for FFPE block storage is to maintain them at room temperature, often for many years.
Methods
To examine the effects of block storage time on FFPE tissues using a number of RNA in situ probes with the Advanced Cellular Diagnostic’s RNAscope assay.
Results
We report marked reductions in signals after 5 years and significant reductions often after 1 year. Furthermore, storing unstained slides cut from recent cases (<1 year old) at –20°C can preserve hybridization signals significantly better than storing the blocks at room temperature and cutting the slides fresh when needed.
Conclusions
We submit that the standard practice of storing FFPE tissue blocks at room temperature should be reevaluated to better preserve RNA for in situ hybridization.
Genes Dev. 2014 Dec 29.
Li N, Zhang Y, Han X, Liang K, Wang J, Feng L, Wang W, Songyang Z, Lin C, Yang L, Yu Y, Chen J.
PMID: 25547115
Human Pathology.
2015 Sep 23
Bingham B, Ong CW, James J, Maxwell P, Waugh D, Salto-Tellez M, McQuaid S.
PMID: - | DOI: dx.doi.org/10.1016/j.humpath.2015.09.009
Immunohistochemical staining for Phosphatase and Tensin Homolog (PTEN) does not have either an acceptable standard protocol or concordance of scoring between pathologists. Evaluation of PTEN mRNA with a unique and verified sequence probe may offer a realistic alternative providing a robust and reproducible protocol. In this study we have evaluated an in situ hybridization (ISH) protocol for PTEN mRNA using RNAScope technology and compared it with a standard protocol for PTEN immunohistochemistry (IHC). PTEN mRNA expression by ISH was consistently more sensitive than PTEN IHC with 56% of samples on a mixed tumour tissue microarray (TMA) showing high expressionby ISH compared to 42% by IHC. On a prostate TMA 49% of cases showed high expression by ISH compared to 43% by IHC. Variations in PTEN mRNA expression within malignant epithelium were quantifiable using image analysis on the prostate TMAs. Within tumours clear over expression of PTEN mRNA on malignant epithelium compared to benign epithelium was frequently observed and quantified. The use of Spot Studio software in the mixed tumour TMA allowed for clear demonstration of varying levels of PTEN mRNA between tumour samples by the mRNA methodology. This was evident by the quantifiable differences between distinct oropharyngeal tumours (upto 3 fold increase in average number of spots per cell between 2 cases). mRNA detection of PTEN or other biomarkers, for which optimal or standardized immunohistochemical techniques are not available, represents a means by which heterogeneity of expression within focal regions of tumour can be explored with more confidence.
J Virol. 2015 Mar 25.
Haagmans BL, van den Brand JM, Provacia LB, Raj VS, Stittelaar KJ, Getu S, de Waal L, Bestebroer TM, van Amerongen G, Verjans GM, Fouchier RA, Smits SL, Thijs K, Osterhaus AD.
Science
2015 Dec 18
Haagmans BL, van den Brand JMA, Stalin Raj V, Volz A, Wohlsein P, Smits SL, Schipper D, Bestebroer TM, Okba N, Fux R, Bensaid A, Solanes Foz D, Kuiken T, Baumgärtner W, Segalés J, Sutter G, Osterhaus ADME.
PMID: - | DOI: 10.1126/science.aad1283
Middle East respiratory syndrome coronavirus (MERS-CoV) infections cause an ongoing outbreak in humans fueled by multiple zoonotic MERS-CoV introductions from dromedary camels. Besides implementing hygiene measures to limit further camel-to-human and human-to-human transmissions, vaccine-mediated reduction of MERS-CoV spread from the animal reservoir may be envisaged. Here, we show that a modified vaccinia virus Ankara (MVA) virus vaccine expressing the MERS-CoV spike protein confers mucosal immunity in dromedary camels. Significant reduction of excreted infectious virus and viral RNA transcripts was observed in vaccinated animals upon MERS-CoV challenge as compared to controls. Protection correlated with the presence of serum neutralizing antibodies to MERS-CoV. Induction of MVA-specific antibodies that cross-neutralize camelpox virus, would also provide protection against camelpox.
Journal of Korean Medical Science
2016 Mar 10
Cha RH, Yang SH, Moon KC, Joh JS, Lee JY, Shin HS, Kim DK, Kim YS.
PMID: - | DOI: 10.3346/jkms.2016.31.4.635
A 68-year old man diagnosed with Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) presented with multiple pneumonic infiltrations on his chest X-ray, and the patient was placed on a mechanical ventilator because of progressive respiratory failure. Urinary protein excretion steadily increased for a microalbumin to creatinine ratio of 538.4 mg/g Cr and a protein to creatinine ratio of 3,025.8 mg/g Cr. The isotope dilution mass spectrometry traceable serum creatinine level increased to 3.0 mg/dL. We performed a kidney biopsy 8 weeks after the onset of symptoms. Acute tubular necrosis was the main finding, and proteinaceous cast formation and acute tubulointerstitial nephritis were found. There were no electron dense deposits observed with electron microscopy. We could not verify the virus itself by in situ hybridization and confocal microscopy (MERS-CoV co-stained with dipeptidyl peptidase 4). The viremic status, urinary virus excretion, and timely kidney biopsy results should be investigated with thorough precautions to reveal the direct effects of MERS-CoV with respect to renal complications.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com