Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (7)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • HPV E6/E7 (30) Apply HPV E6/E7 filter
  • Lgr5 (20) Apply Lgr5 filter
  • PD-L1 (9) Apply PD-L1 filter
  • Axin2 (6) Apply Axin2 filter
  • FGFR1 (6) Apply FGFR1 filter
  • IFN-γ (5) Apply IFN-γ filter
  • HER2 (5) Apply HER2 filter
  • OLFM4 (5) Apply OLFM4 filter
  • MALAT1 (4) Apply MALAT1 filter
  • Wnt4 (4) Apply Wnt4 filter
  • Wnt5a (4) Apply Wnt5a filter
  • MYC (4) Apply MYC filter
  • OLFM4 (4) Apply OLFM4 filter
  • PTEN (4) Apply PTEN filter
  • TERT (4) Apply TERT filter
  • TNF-α (4) Apply TNF-α filter
  • TGF-β (4) Apply TGF-β filter
  • IL-17A (4) Apply IL-17A filter
  • HPV (4) Apply HPV filter
  • (-) Remove AR-V7 filter AR-V7 (4)
  • Wnt7a (3) Apply Wnt7a filter
  • AR (3) Apply AR filter
  • BRCA1 (3) Apply BRCA1 filter
  • MET (3) Apply MET filter
  • CXCL10 (3) Apply CXCL10 filter
  • HEY2 (3) Apply HEY2 filter
  • HOTAIR (3) Apply HOTAIR filter
  • IL-10 (3) Apply IL-10 filter
  • H19 (3) Apply H19 filter
  • HIV (3) Apply HIV filter
  • Lgr4 (3) Apply Lgr4 filter
  • COL11A1 (3) Apply COL11A1 filter
  • ASPM (3) Apply ASPM filter
  • IL-8 (3) Apply IL-8 filter
  • VEGF (3) Apply VEGF filter
  • Il-6 (3) Apply Il-6 filter
  • (-) Remove MERS-CoV filter MERS-CoV (3)
  • HPV HR7 (3) Apply HPV HR7 filter
  • LINC00473 (3) Apply LINC00473 filter
  • PD-l2 (3) Apply PD-l2 filter
  • HIV-1 (3) Apply HIV-1 filter
  • TNFA (3) Apply TNFA filter
  • CD274 (2) Apply CD274 filter
  • TGFB1 (2) Apply TGFB1 filter
  • Wnt10a (2) Apply Wnt10a filter
  • Wnt10b (2) Apply Wnt10b filter
  • Wnt16 (2) Apply Wnt16 filter
  • Wnt1 (2) Apply Wnt1 filter
  • Wnt6 (2) Apply Wnt6 filter
  • Wnt7b (2) Apply Wnt7b filter

Product

  • (-) Remove RNAscope 2.0 Assay filter RNAscope 2.0 Assay (7)

Research area

  • Cancer (4) Apply Cancer filter
  • Infectious Disease (3) Apply Infectious Disease filter

Category

  • Publications (7) Apply Publications filter
Analytic Validation of RNA In Situ Hybridization (RISH) for AR and AR-V7 Expression in Human Prostate Cancer.

Clin Cancer Res.

2016 May 10

Guedes L, Morais C, Almutairi F, Haffner MC, Zheng Q, Isaacs JT, Antonarakis ES, Lu C, Tsai H, Luo J, De Marzo AM, Lotan TL.
PMID: 27166397 | DOI: -

Abstract

PURPOSE:

RNA expression of androgen receptor splice variants may be a biomarker of resistance to novel androgen deprivation therapies in castrate resistant prostate cancer (CRPC). We analytically validated an RNA in situ hybridization (RISH) assay for total AR and AR-V7 for use in formalin fixed paraffin embedded (FFPE) prostate tumors.

EXPERIMENTAL DESIGN:

We used prostate cell lines and xenografts to validate chromogenic RISH to detect RNA containing AR exon 1 (AR-E1, surrogate for total AR RNA species) and cryptic exon 3 (AR-CE3, surrogate for AR-V7 expression). RISH signals were quantified in FFPE primary tumors and CRPC specimens, comparing to known AR and AR-V7 status by immunohistochemistry and RT-PCR.

RESULTS:

The quantified RISH results correlated significantly with total AR and AR-V7 levels by RT-PCR in cell lines, xenografts and autopsy metastases. Both AR-E1 and AR-CE3 RISH signals were localized in nuclear punctae in addition to the expected cytoplasmic speckles. Compared to admixed benign glands, AR-E1 expression was significantly higher in primary tumor cells with a median fold increase of 3.0 and 1.4 in two independent cohorts (p<0.0001 and p=0.04, respectively). While AR-CE3 expression was detectable in primary prostatic tumors, levels were substantially higher in a subset of CRPC metastases and cell lines, and were correlated with AR-E1 expression.

CONCLUSIONS:

RISH for AR-E1 and AR-CE3 is an analytically valid method to examine total AR and AR-V7 RNA levels in FFPE tissues. Future clinical validation studies are required to determine whether AR RISH is a prognostic or predictive biomarker in specific clinical contexts.

Quercetin targets hnRNPA1 to overcome enzalutamide resistance in prostate cancer cells.

Mol Cancer Ther.

2017 Jul 20

Tummala R, Lou W, Gao AC, Nadiminty N.
PMID: 28729398 | DOI: 10.1158/1535-7163.MCT-17-0030

Prostate cancer remains dependent on androgen receptor signaling even after castration. Aberrant androgen receptor signaling in castration resistant prostate cancer is mediated by mechanisms such as alterations in the androgen receptor and activation of interacting signaling pathways. Clinical evidence confirms that resistance to the next generation anti-androgen, enzalutamide, may be mediated to a large extent by alternative splicing of the androgen receptor to generate constitutively active splice variants such as AR-V7. The splice variants AR-V7 and Arv567es have been implicated in the resistance to not only enzalutamide, but also to abiraterone and other conventional therapeutics such as taxanes. Numerous studies including ours suggest that splicing factors such as hnRNPA1 promote the generation of AR-V7, thus contributing to enzalutamide resistance in prostate cancer cells. In the present study, we discovered that quercetin, a naturally occurring polyphenolic compound, reduces the expression of hnRNPA1, and consequently, that of AR-V7. The suppression of AR-V7 by quercetin resensitizes enzalutamide-resistant prostate cancer cells to treatment with enzalutamide. Our results indicate that quercetin downregulates hnRNPA1 expression, downregulates the expression of AR-V7, antagonizes androgen receptor signaling, and resensitizes enzalutamide-resistant prostate cancer cells to enzalutamide treatment in vivo in mouse xenografts. These findings demonstrate that suppressing the alternative splicing of the androgen receptor may have important implications in overcoming the resistance to next-generation anti-androgen therapy.

Snail promotes resistance to enzalutamide through regulation of androgen receptor activity in prostate cancer.

Oncotarget.

2016 Jul 07

Ware KE, Somarelli JA, Schaeffer D, Li J, Zhang T, Park S, Patierno SR, Freedman J, Garcia-Blanco MA, Armstrong AJ.
PMID: 27409172 | DOI: 10.18632/oncotarget.10476

Treatment with androgen-targeted therapies can induce upregulation of epithelial plasticity pathways. Epithelial plasticity is known to be important for metastatic dissemination and therapeutic resistance. The goal of this study is to elucidate the functional consequence of induced epithelial plasticity on AR regulation during disease progression to identify factors important for treatment-resistant and metastatic prostate cancer. We pinpoint the epithelial plasticity transcription factor, Snail, at the nexus of enzalutamide resistance and prostate cancer metastasis both in preclinical models of prostate cancer and in patients. In patients, Snail expression is associated with Gleason 9-10 high-risk disease and is strongly overexpressed in metastases as compared to localized prostate cancer. Snail expression is also elevated in enzalutamide-resistant prostate cancer cells compared to enzalutamide-sensitive cells, and downregulation of Snail re-sensitizes enzalutamide-resistant cells to enzalutamide. While activation of Snail increases migration and invasion, it is also capable of promoting enzalutamide resistance in enzalutamide-sensitive cells. This Snail-mediated enzalutamide resistance is a consequence of increased full-length AR and AR-V7 expression and nuclear localization. Downregulation of either full-length AR or AR-V7 re-sensitizes cells to enzalutamide in the presence of Snail, thus connecting Snail-induced enzalutamide resistance directly to AR biology. Finally, we demonstrate that Snail is capable of mediating-resistance through AR even in the absence of AR-V7. These findings imply that increased Snail expressionduring progression to metastatic disease may prime cells for resistance to AR-targeted therapies by promoting AR activity in prostate cancer.

Detection of AR-V7 transcript with RNA in situ hybridization in human salivary duct cancer

Oral Oncology

2018 Jun 28

Kang H, Antonarakis ES, Luo J, Zheng Q, Rooper L, De Marzo AM, Westra WH, Lotan TL.
PMID: - | DOI: 10.1016/j.oraloncology.2018.06.026

The androgen receptor (AR) is a nuclear steroid receptor that binds to testosterone and dihydrotestosterone and regulates the transcription of genes leading to cell growth, differentiation and survival. AR serves as an important oncogenic signal in prostate cancers and apocrine breast cancers. Salivary duct carcinoma (SDC) is a rare subtype of head and neck cancer that is defined by an apocrine phenotype, with AR positivity by immunohistochemistry (IHC) in up to 98% of cases [1]. A recent clinical trial with leuprorelin acetate and bicalutamide has shown promising activity with an overall response rate of 42% in AR-positive salivary gland cancers, but further analyses of clinicopathological factors or biomarkers including AR expression intensity, HER2 expression, EGFR expression and HRAS mutation did not show any significant association with outcomes [2].

Asymptomatic Middle East Respiratory Syndrome Coronavirus Infection in Rabbits.

J Virol. 2015 Mar 25.

Haagmans BL, van den Brand JM, Provacia LB, Raj VS, Stittelaar KJ, Getu S, de Waal L, Bestebroer TM, van Amerongen G, Verjans GM, Fouchier RA, Smits SL, Thijs K, Osterhaus AD.

The ability of Middle East respiratory syndrome coronavirus (MERS-CoV) to infect small animal species may be restricted given the fact that mice, ferrets and hamsters were shown to resist MERS-CoV infection. We inoculated rabbits with MERS-CoV. Although virus was detected in the lungs, neither significant histopathological changes nor clinical symptoms were observed. Infectious virus, however, was excreted from the upper respiratory tract, indicating a potential route of MERS-CoV transmission in some animal species.
An orthopoxvirus-based vaccine reduces virus excretion after MERS CoV infection in dromedary camels

Science

2015 Dec 18

Haagmans BL, van den Brand JMA, Stalin Raj V, Volz A, Wohlsein P, Smits SL, Schipper D, Bestebroer TM, Okba N, Fux R, Bensaid A, Solanes Foz D, Kuiken T, Baumgärtner W, Segalés J, Sutter G, Osterhaus ADME.
PMID: - | DOI: 10.1126/science.aad1283

Middle East respiratory syndrome coronavirus (MERS-CoV) infections cause an ongoing outbreak in humans fueled by multiple zoonotic MERS-CoV introductions from dromedary camels. Besides implementing hygiene measures to limit further camel-to-human and human-to-human transmissions, vaccine-mediated reduction of MERS-CoV spread from the animal reservoir may be envisaged. Here, we show that a modified vaccinia virus Ankara (MVA) virus vaccine expressing the MERS-CoV spike protein confers mucosal immunity in dromedary camels. Significant reduction of excreted infectious virus and viral RNA transcripts was observed in vaccinated animals upon MERS-CoV challenge as compared to controls. Protection correlated with the presence of serum neutralizing antibodies to MERS-CoV. Induction of MVA-specific antibodies that cross-neutralize camelpox virus, would also provide protection against camelpox.

A Case Report of a Middle East Respiratory Syndrome Survivor with Kidney Biopsy Results

Journal of Korean Medical Science

2016 Mar 10

Cha RH, Yang SH, Moon KC, Joh JS, Lee JY, Shin HS, Kim DK, Kim YS.
PMID: - | DOI: 10.3346/jkms.2016.31.4.635

A 68-year old man diagnosed with Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) presented with multiple pneumonic infiltrations on his chest X-ray, and the patient was placed on a mechanical ventilator because of progressive respiratory failure. Urinary protein excretion steadily increased for a microalbumin to creatinine ratio of 538.4 mg/g Cr and a protein to creatinine ratio of 3,025.8 mg/g Cr. The isotope dilution mass spectrometry traceable serum creatinine level increased to 3.0 mg/dL. We performed a kidney biopsy 8 weeks after the onset of symptoms. Acute tubular necrosis was the main finding, and proteinaceous cast formation and acute tubulointerstitial nephritis were found. There were no electron dense deposits observed with electron microscopy. We could not verify the virus itself by in situ hybridization and confocal microscopy (MERS-CoV co-stained with dipeptidyl peptidase 4). The viremic status, urinary virus excretion, and timely kidney biopsy results should be investigated with thorough precautions to reveal the direct effects of MERS-CoV with respect to renal complications.

X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?