Mätlik, K;Garton, DR;Montaño-Rodríguez, AR;Olfat, S;Eren, F;Casserly, L;Damdimopoulos, A;Panhelainen, A;Porokuokka, LL;Kopra, JJ;Turconi, G;Schweizer, N;Bereczki, E;Piehl, F;Engberg, G;Cervenka, S;Piepponen, TP;Zhang, FP;Sipilä, P;Jakobsson, J;Sellgren, CM;Erhardt, S;Andressoo, JO;
PMID: 35618883 | DOI: 10.1038/s41380-022-01554-2
Presynaptic increase in striatal dopamine is the primary dopaminergic abnormality in schizophrenia, but the underlying mechanisms are not understood. Here, we hypothesized that increased expression of endogenous GDNF could induce dopaminergic abnormalities that resemble those seen in schizophrenia. To test the impact of GDNF elevation, without inducing adverse effects caused by ectopic overexpression, we developed a novel in vivo approach to conditionally increase endogenous GDNF expression. We found that a 2-3-fold increase in endogenous GDNF in the brain was sufficient to induce molecular, cellular, and functional changes in dopamine signalling in the striatum and prefrontal cortex, including increased striatal presynaptic dopamine levels and reduction of dopamine in prefrontal cortex. Mechanistically, we identified adenosine A2a receptor (A2AR), a G-protein coupled receptor that modulates dopaminergic signalling, as a possible mediator of GDNF-driven dopaminergic abnormalities. We further showed that pharmacological inhibition of A2AR with istradefylline partially normalised striatal GDNF and striatal and cortical dopamine levels in mice. Lastly, we found that GDNF levels are increased in the cerebrospinal fluid of first episode psychosis patients, and in post-mortem striatum of schizophrenia patients. Our results reveal a possible contributor for increased striatal dopamine signalling in a subgroup of schizophrenia patients and suggest that GDNF-A2AR crosstalk may regulate dopamine function in a therapeutically targetable manner.
Li, J;Zheng, S;Dong, Y;Xu, H;Zhu, Y;Weng, J;Sun, D;Wang, S;Xiao, L;Jiang, Y;
| DOI: 10.1016/j.biopsych.2022.08.021
Background GABAergic interneurons (INs) are highly heterogeneous, and 5-hydroxytryptamine (serotonin) receptor 3A (Htr3a) labels a subpopulation of cortical INs originating from the embryonic caudal ganglionic eminence (GE). SETDB1 is one of the histone H3K9 methyltransferases and plays an essential role in the excitatory neurons, but its role in regulating cortical inhibitory INs remains largely unknown. Methods In the current study, we generated transgenic mice with conditional knockout of Setdb1 in neural progenitor cells (NPCs) (Setdb1-NS-cKO) and GABAergic neurons (Setdb1-Gad2-cKO). In addition, we performed RNA-seq, ATAC-seq, ChIP-seq, luciferase assay, Chromatin Conformation Capture (3C), and CRISPR/dCas9 to study the epigenetic mechanism underlying SETDB1-mediated transcriptional regulation of Htr3a. We also performed in situ hybridization and whole-cell recording to evaluate the functional properties of cortical Htr3a+ INs and behavioral tests for mood. Results We detected a significant upregulation of Htr3a expression in the embryonic GE of Setdb1-NS-cKO and identified the endogenous retroviral sequence RMER21B as a new target of SETDB1. RMER21B showed enhancer activity and formed distal chromatin interaction with the promoter of Htr3a. In addition, we observed an increased number and enhanced excitability of Htr3a+ INs in the knockout cortex. Moreover, Setdb1-Gad2-cKO mice exhibit anxiety and depressive-like behaviors, which were partially reversed by the type-3 serotonin receptor (5-HT3R) antagonist. Conclusions These findings suggest that SETDB1 represses Htr3a transcription via RMER21B-mediated distal chromatin interaction in the embryonic GE and regulates the development of cortical Htr3a+ INs and mood behaviors.
Yu, Z;Han, Y;Hu, D;Chen, N;Zhang, Z;Chen, W;Xue, Y;Meng, S;Lu, L;Zhang, W;Shi, J;
PMID: 35264728 | DOI: 10.1038/s41380-022-01495-w
Depression is more prevalent among adolescents than adults, but the underlying mechanisms remain largely unknown. Using a subthreshold chronic stress model, here we show that developmentally regulated expressions of the perineuronal nets (PNNs), and one of the components, Neurocan in the prelimbic cortex (PrL) are important for the vulnerability to stress and depressive-like behaviors in both adolescent and adult rats. Reduction of PNNs or Neurocan with pharmacological or viral methods to mimic the expression of PNNs in the PrL during adolescence compromised resilience to stress in adult rats, while virally mediated overexpression of Neurocan reversed vulnerability to stress in adolescent rats. Ketamine, a recent-approved drug for treatment-resistant depression rescued impaired function of Parvalbumin-positive neurons function, increased expression of PNNs in the PrL, and reversed depressive-like behaviors in adolescent rats. Furthermore, we show that Neurocan mediates the anti-depressant effect of ketamine, virally mediated reduction of Neurocan in the PrL abolished the anti-depressant effect of ketamine in adolescent rats. Our findings show an important role of Neurocan in depression in adolescence, and suggest a novel mechanism for the anti-depressant effect of ketamine.
Fox, M;Wulff, A;Franco, D;Choi, E;Calarco, C;Engeln, M;Turner, M;Chandra, R;Rhodes, V;Thompson, S;Ament, S;Lobo, M;
| DOI: 10.1016/j.biopsych.2022.08.023
Background Opioid discontinuation generates a withdrawal syndrome marked by increased negative affect. Increased symptoms of anxiety and dysphoria during opioid discontinuation are a significant barrier to achieving long-term abstinence in opioid-dependent individuals. While adaptations in the nucleus accumbens are implicated in the opioid abstinence syndrome, the precise neural mechanisms are poorly understood. Additionally, our current knowledge is limited to changes following natural and semi-synthetic opioids, despite recent increases in synthetic opioid use and overdose. Methods We used a combination of cell subtype specific viral-labeling and electrophysiology in male and female mice to investigate structural and functional plasticity in nucleus accumbens medium spiny neuron (MSNs) subtypes after fentanyl abstinence. We characterized molecular adaptations after fentanyl abstinence with subtype specific RNAseq and Weighted Gene Co-expression Network Analysis. We used viral-mediated gene transfer to manipulate the molecular signature of fentanyl abstinence in D1-MSNs. Results Here we show fentanyl abstinence increases anxiety-like behavior, decreases social interaction, and engenders MSN subtype-specific plasticity in both sexes. D1, but not D2-MSNs exhibit dendritic atrophy and an increase in excitatory drive. We identified a cluster of co-expressed dendritic morphology genes downregulated selectively in D1-MSNs that are transcriptionally co-regulated by E2F1. E2f1 expression in D1-MSNs protects against loss of dendritic complexity, altered physiology, and negative affect-like behaviors caused by fentanyl abstinence. Conclusion Our findings indicate fentanyl abstinence causes unique structural, functional, and molecular changes in nucleus accumbens D1-MSNs that can be targeted to alleviate negative affective symptoms during abstinence.
Behavioural Brain Research
Blount, H;Dee, J;Wu, L;Schwendt, M;Knackstedt, L;
| DOI: 10.1016/j.bbr.2022.114090
Despite the higher prevalence of post-traumatic stress disorder (PTSD) in women, the majority of preclinical research has been conducted utilizing male subjects. We have found that male rats exposed to the predator scent 2,4,5-trimethyl-3-thiazoline (TMT) show heterogenous long-term anxiety-like behavior and conditioned fear to the TMT environment. Stress-Resilient males exhibit increased mGlu5 mRNA expression in the basolateral amygdala (BLA) and prefrontal cortex (PFC). Here we sought to determine whether the same behavioral and genetic responses would be observed in female rats exposed to TMT. Female Sprague-Dawley rats were exposed to TMT for ten minutes, while Controls were exposed to an unscented environment. Anxiety and anhedonia were assessed 7-14 days later with elevated plus maze (EPM), acoustic startle response, light-dark box, and sucrose preference test (SPT). TMT-exposed females spent less time in the EPM open arms, exhibited greater startle amplitude, and reduced sucrose intake compared to Controls. Median split analyses conducted on EPM and SPT data yielded stress-Susceptible and -Resilient phenotypes that displayed behavior in the light-dark box consistent with EPM and SPT behavior. Susceptible females displayed greater BLA mGlu5 mRNA expression than Resilient and Control rats and did not show conditioned fear, in contrast to previous results in males. Resilient females displayed greater mGlu5 mRNA expression in the nucleus accumbens. These data indicate that the predator scent stress model of PTSD produces distinct stress-Susceptible and Resilient phenotypes in female rats that are associated with changes in mGlu5 mRNA expression in several brain regions.
Khatamsaz, E;Stoller, F;Zach, S;Kätzel, D;Hengerer, B;
| DOI: 10.1016/j.nsa.2022.100659
Background: The Psychiatric Ratings using Intermediate Stratified Markers (PRISM) project focuses on understanding the biological background behind social deficits, specifically social withdrawal irrespective of diagnosis. Reduced connectional integrity in fiber tracts such as Forceps minor has been indicated in low social individuals as a part of the PRISM 1 project. These fiber tracts are also involved in the Default Mode Network (DMN) and the Social network and they share a common region, the Orbitofrontal Cortex (OFC).This study aims to back-translate the clinical data to preclinical studies and associate social dysfunction in rodents with DMN and particularly OFC. Parvalbumin interneurons are targeted based on their fundamental role in maintaining Excitatory Inhibitory (E/I) balance in brain circuits. Numerous studies indicate behavioral impairment in rodents by increasing excitability of PV+ interneurons. Methods: As an initial step, we characterized the population of projection neurons within OFCs by combining Cholera Toxin subunit B (CTB) as a retrograde tracer and In situ hybridization (ISH) technique (RNAscope). We identified the expression of mRNAs marking glutamatergic (vesicular glutamate transporter [VGLUT]) and GABAergic (vesicular GABA transporter [VGAT]) by using Slc17a7 and Slc32a1 probes. CTB was injected unilaterally in the left OFC (AP=2.68, ML=-0.8, DV=2.2). after 10 days mice were perfused and RNAscope assay was performed using RNAscope™ Multiplex Fluorescent kit (ACDBio™).For inducing hypoactivation of OFC, we introduced an excitatory DREADD (designer receptors exclusively activated by designer drugs) to PV+ interneurons by using a PV-Cre mouse line. Mice were injected either AAV-hSyn-DIO-hM3D(Gq)-mCherry virus (n=12) or AAV-hSyn-DIO-mCherry (n=12) as control virus. As a novel behavioral tool, Radiofrequency identification (RFID)-assisted SocialScan combined with video tracking has been used, which provides a long-term observation of social behaviors. Monitoring the behavior in groups of four was performed for 7 days in total. After two pre-application days, Clozapine-N-oxide (CNO) was injected three times on consecutive days intraperitoneally (5mg/kg) as an activator of hM3D. application days were followed by two post-application days. Mice were perfused and RNAscope was performed to visualize c-fos mRNA expression as neuronal activity marker, and PV expression to validate our virus and mouse line efficacy. Results: ISH results indicated VGLUT1 has the highest expression within projection neurons (81%). 6% are VGAT+ and only 3% are both VGLUT1/VGAT positive neurons. Despite demonstrating the GABAergic projection neurons as a minority, their crucial role as local interneurons to moderate the excitatory neurons is indisputable.In in vivo study, CNO administration induced social dysregulation in DREAAD mice, demonstrated by a reduction in different social parameters (approach, fight, etc.) in terms of duration. During post-application days, DREAAD mice showed significantly higher social interaction in all definedparameters (Social Approach: p=0.0009, unpaired T-test) and locomotion as a non-social parameter (p= 0.0207).Results from ISH support our hypothesis that DREADD activation of PV+ interneurons is followed by high expression of neuronal activity markers in these targeted interneurons. Conclusion: This study indicates that manipulation of PV+ interneurons using artificially engineered activating protein receptors, generates in effect activation of these interneurons, and this manipulation particularly in OFC could cause social dysfunction in mice.
Dilly, GA;Kittleman, CW;Kerr, TM;Messing, RO;Mayfield, RD;
PMID: 35859068 | DOI: 10.1038/s41398-022-02063-0
The central amygdala (CeA) contains a diverse population of cells, including multiple subtypes of GABAergic neurons, along with glia and epithelial cells. Specific CeA cell types have been shown to affect alcohol consumption in animal models of dependence and may be involved in negative affect during alcohol withdrawal. We used single-nuclei RNA sequencing to determine cell-type specificity of differential gene expression in the CeA induced by alcohol withdrawal. Cells within the CeA were classified using unbiased clustering analyses and identified based on the expression of known marker genes. Differential gene expression analysis was performed on each identified CeA cell-type. It revealed differential gene expression in astrocytes and GABAergic neurons associated with alcohol withdrawal. GABAergic neurons were further subclassified into 13 clusters of cells. Analyzing transcriptomic responses in these subclusters revealed that alcohol exposure induced multiple differentially expressed genes in one subtype of CeA GABAergic neurons, the protein kinase C delta (PKCδ) expressing neurons. These results suggest that PKCδ neurons in the CeA may be uniquely sensitive to the effects of alcohol exposure and identify a novel population of cells in CeA associated with alcohol withdrawal.
Biological Psychiatry Global Open Science
Guerri, L;Dobbs, L;da Silva e Silva, D;Meyers, A;Ge, A;Lecaj, L;Djakuduel, C;Islek, D;Hipolito, D;Martinez, A;Shen, P;Marietta, C;Garamszegi, S;Capobianco, E;Jiang, Z;Schwandt, M;Mash, D;Alvarez, V;Goldman, D;
| DOI: 10.1016/j.bpsgos.2022.08.010
Background A salient effect of addictive drugs is to hijack the dopamine reward system, an evolutionarily conserved driver of goal-directed behavior and learning. Reduced dopamine type-II receptor (D2R) availability in the striatum is an important pathophysiological mechanism for addiction that is both consequential and causal for other molecular, cellular, and neuronal network differences etiologic for this disorder. Here, we sought to identify gene expression changes attributable to innate low expression of the Drd2 gene in the striatum and specific to striatal indirect medium spiny neurons (iMSNs). Methods Cre-conditional, Translating Ribosome Affinity Purification (TRAP) was used to purify and analyze the translatome (ribosome-bound mRNA) of iMSNs from mice with low/heterozygous or wild-type Drd2 expression in iMSNs. Complementary electrophysiological recordings and gene expression analysis of postmortem brain tissue from human cocaine users were performed. Results Innate low expression of Drd2 in iMSNs led to differential expression of genes involved in GABA and cAMP signaling, neural growth, lipid metabolism, neural excitability, and inflammation. Creb1 was identified as a likely upstream regulator, among others. In human brain, expression of FXYD2, a modulatory subunit of the Na/K pump, was negatively correlated with DRD2 mRNA expression. In iMSN-TRAP-Drd2HET mice, increased Cartpt and reduced S100a10 (p11) expression recapitulated previous observations in cocaine paradigms. Electrophysiology experiments supported a higher GABA tone in iMSN-Drd2HET mice. Conclusion This study provides strong molecular evidence that in addiction inhibition by the indirect pathway is constitutively enhanced through neural growth and increased GABA signaling.
Kemp, GM;Altimimi, HF;Nho, Y;Heir, R;Klyczek, A;Stellwagen, D;
PMID: 36104437 | DOI: 10.1038/s41380-022-01737-x
Acute stress triggers plasticity of forebrain synapses as well as behavioral changes. Here we reveal that Tumor Necrosis Factor α (TNF) is a required downstream mediator of the stress response in mice, necessary for stress-induced synaptic potentiation in the ventral hippocampus and for an increase in anxiety-like behaviour. Acute stress is sufficient to activate microglia, triggering the long-term release of TNF. Critically, on-going TNF signaling specifically in the ventral hippocampus is necessary to sustain both the stress-induced synaptic and behavioral changes, as these could be reversed hours after induction by antagonizing TNF signaling. This demonstrates that TNF maintains the synaptic and behavioral stress response in vivo, making TNF a potential novel therapeutic target for stress disorders.
Riccardo, B;Kanat, C;Michele, P;Li, X;Simon, S;Esi, D;Gaelle, A;Andrea, C;Wiskerke, J;Szczot, I;Ana, D;Louise, A;Eric, A;Claudio, C;Markus, H;Estelle, B;
PMID: 36127428 | DOI: 10.1038/s41380-022-01758-6
Excessive fear is a hallmark of anxiety disorders, a major cause of disease burden worldwide. Substantial evidence supports a role of prefrontal cortex-amygdala circuits in the regulation of fear and anxiety, but the molecular mechanisms that regulate their activity remain poorly understood. Here, we show that downregulation of the histone methyltransferase PRDM2 in the dorsomedial prefrontal cortex enhances fear expression by modulating fear memory consolidation. We further show that Prdm2 knock-down (KD) in neurons that project from the dorsomedial prefrontal cortex to the basolateral amygdala (dmPFC-BLA) promotes increased fear expression. Prdm2 KD in the dmPFC-BLA circuit also resulted in increased expression of genes involved in synaptogenesis, suggesting that Prdm2 KD modulates consolidation of conditioned fear by modifying synaptic strength at dmPFC-BLA projection targets. Consistent with an enhanced synaptic efficacy, we found that dmPFC Prdm2 KD increased glutamatergic release probability in the BLA and increased the activity of BLA neurons in response to fear-associated cues. Together, our findings provide a new molecular mechanism for excessive fear responses, wherein PRDM2 modulates the dmPFC -BLA circuit through specific transcriptomic changes.
Lewis, EM;Spence, HE;Akella, N;Buonanno, A;
PMID: 36075962 | DOI: 10.1038/s41380-022-01747-9
Prefrontal cortex (PFC) is a site of information convergence important for behaviors relevant to psychiatric disorders. Despite the importance of inhibitory GABAergic parvalbumin-expressing (PV+) interneurons to PFC circuit function and decades of interest in N-methyl-D-aspartate receptors (NMDARs) in these neurons, examples of defined circuit functions that depend on PV+ interneuron NMDARs have been elusive. Indeed, it remains controversial whether all PV+ interneurons contain functional NMDARs in adult PFC, which has major consequences for hypotheses of the pathogenesis of psychiatric disorders. Using a combination of fluorescent in situ hybridization, pathway-specific optogenetics, cell-type-specific gene ablation, and electrophysiological recordings from PV+ interneurons, here we resolve this controversy. We found that nearly 100% of PV+ interneurons in adult medial PFC (mPFC) express transcripts encoding GluN1 and GluN2B, and they have functional NMDARs. By optogenetically stimulating corticocortical and thalamocortical inputs to mPFC, we show that synaptic NMDAR contribution to PV+ interneuron EPSCs is pathway-specific, which likely explains earlier reports of PV+ interneurons without synaptic NMDAR currents. Lastly, we report a major contribution of NMDARs in PV+ interneurons to thalamus-mediated feedforward inhibition in adult mPFC circuits, suggesting molecular and circuit-based mechanisms for cognitive impairment under conditions of reduced NMDAR function. These findings represent an important conceptual advance that has major implications for hypotheses of the pathogenesis of psychiatric disorders.
Rayan, NA;Kumar, V;Aow, J;Rastegar, N;Lim, MGL;O'Toole, N;Aliwarga, E;Arcego, DM;Yeo, HTG;Wong, JY;Lee, MY;Schmidt, F;Haja, HS;Tam, WL;Zhang, TY;Diorio, J;Anacker, C;Hen, R;Parent, C;Meaney, MJ;Prabhakar, S;
PMID: 36056172 | DOI: 10.1038/s41380-022-01725-1
Depression and anxiety are major global health burdens. Although SSRIs targeting the serotonergic system are prescribed over 200 million times annually, they have variable therapeutic efficacy and side effects, and mechanisms of action remain incompletely understood. Here, we comprehensively characterise the molecular landscape of gene regulatory changes associated with fluoxetine, a widely-used SSRI. We performed multimodal analysis of SSRI response in 27 mammalian brain regions using 310 bulk RNA-seq and H3K27ac ChIP-seq datasets, followed by in-depth characterisation of two hippocampal regions using single-cell RNA-seq (20 datasets). Remarkably, fluoxetine induced profound region-specific shifts in gene expression and chromatin state, including in the nucleus accumbens shell, locus coeruleus and septal areas, as well as in more well-studied regions such as the raphe and hippocampal dentate gyrus. Expression changes were strongly enriched at GWAS loci for depression and antidepressant drug response, stressing the relevance to human phenotypes. We observed differential expression at dozens of signalling receptors and pathways, many of which are previously unknown. Single-cell analysis revealed stark differences in fluoxetine response between the dorsal and ventral hippocampal dentate gyri, particularly in oligodendrocytes, mossy cells and inhibitory neurons. Across diverse brain regions, integrative omics analysis consistently suggested increased energy metabolism via oxidative phosphorylation and mitochondrial changes, which we corroborated in vitro; this may thus constitute a shared mechanism of action of fluoxetine. Similarly, we observed pervasive chromatin remodelling signatures across the brain. Our study reveals unexpected regional and cell type-specific heterogeneity in SSRI action, highlights under-studied brain regions that may play a major role in antidepressant response, and provides a rich resource of candidate cell types, genes, gene regulatory elements and pathways for mechanistic analysis and identifying new therapeutic targets for depression and anxiety.