ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Clin Cancer Res.
2019 Apr 19
Piskol R, Huw LY, Sergin I, Klijn C, Modrusan Z, Kim D, Kljavin NM, Tam R, Patel R, Burton J, Penuel E, Qu X, Koeppen H, Sumiyoshi T, de Sauvage FJ, Lackner MR, de Sousa E Melo F, Kabbarah O.
PMID: 31004000 | DOI: 10.1158/1078-0432.CCR-18-3032
Abstract
PURPOSE:
Four consensus molecular subtypes (CMS1-4) of colorectal cancer (CRC) were identified in primary tumors and found to be associated with distinctive biological features and clinical outcomes. Given that distant metastasis largely accounts for CRC-related mortality, we examined the molecular and clinical attributes of CMS in metastatic CRC (mCRC).
EXPERIMENTAL DESIGN:
We developed a CRC-focused Nanostring based CMS classifier that is ideally suited to interrogate archival tissues. We successfully employ this panel in the CMS classification of FFPE tissues from mCRC cohorts, one of which is comprised of paired primary tumors and metastases. Finally, we developed novel mouse implantation models to enable modelling of CRC in vivo at relevant sites.
RESULTS:
Using our classifier we find that the biological hallmarks of mCRC, including CMS, are in general highly similar to those observed in non-metastatic early stage disease. Importantly, our data demonstrate that CMS1 has the worst outcome in relapsed disease, compared to other CMS. Assigning CMS to primary tumors and their matched metastases revealed mostly concordant subtypes between primary and metastasis. Molecular analysis of matched discordant pairs revealed differences in stromal composition at each site. The development of two novel in vivo orthotopic implantation models further reinforces the notion that extrinsic factors may impact on CMS identification in matched primary and metastatic CRC.
CONCLUSION:
We describe the utility of a Nanostring panel for CMS classification of FFPE clinical samples. Our work reveals the impact of intrinsic and extrinsic factors on CRC heterogeneity during disease progression.
Nature
2018 Nov 21
Lee MH, Siddoway B, Kaeser GE, Segota I, Rivera R, Romanow WJ, Liu CS, Park C, Kennedy G, Long T, Chun J.
PMID: 30464338 | DOI: 10.1038/s41586-018-0718-6
The diversity and complexity of the human brain are widely assumed to be encoded within a constant genome. Somatic gene recombination, which changes germline DNA sequences to increase molecular diversity, could theoretically alter this code but has not been documented in the brain, to our knowledge. Here we describe recombination of the Alzheimer's disease-related gene APP, which encodes amyloid precursor protein, in human neurons, occurring mosaically as thousands of variant 'genomic cDNAs' (gencDNAs). gencDNAs lacked introns and ranged from full-length cDNA copies of expressed, brain-specific RNA splice variants to myriad smaller forms that contained intra-exonic junctions, insertions, deletions, and/or single nucleotide variations. DNA in situ hybridization identified gencDNAs within single neurons that were distinct from wild-type loci and absent from non-neuronal cells. Mechanistic studies supported neuronal 'retro-insertion' of RNA to produce gencDNAs; this process involved transcription, DNA breaks, reverse transcriptase activity, and age. Neurons from individuals with sporadic Alzheimer's disease showed increased gencDNA diversity, including eleven mutations known to be associated with familial Alzheimer's disease that were absent from healthy neurons. Neuronal gene recombination may allow 'recording' of neural activity for selective 'playback' of preferred gene variants whose expression bypasses splicing; this has implications for cellular diversity, learning and memory, plasticity, and diseases of the human brain.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com