Invest Ophthalmol Vis Sci.
Sun M, Wadehra M, Casero D, Lin MC, Aguirre B, Parikh S, Matynia A, Gordon L, Chu A
PMID: 32031575 | DOI: 10.1167/iovs.61.2.3
PURPOSE:
Retinopathy of prematurity (ROP) is a leading cause of childhood blindness. ROP occurs as a consequence of postnatal hyperoxia exposure in premature infants, resulting in vasoproliferation in the retina. The tetraspan protein epithelial membrane protein-2 (EMP2) is highly expressed in the retinal pigment epithelium (RPE) in adults, and it controls vascular endothelial growth factor (VEGF) production in the ARPE-19 cell line. We, therefore, hypothesized that Emp2 knockout (Emp2 KO) protects against neovascularization in murine oxygen-induced retinopathy (OIR).
METHODS:
Eyes were obtained from wildtype (WT) and Emp2 KO mouse pups at P7, P12, P17, and P21 after normoxia or hyperoxia (P7-P12) exposure. Following hyperoxia exposure, RNA sequencing was performed using the retina/choroid layers obtained from WT and Emp2 KO at P17. Retinal sections from P7, P12, P17, and P21 were evaluated for Emp2, hypoxia-inducible factor 1? (Hif1?), and VEGF expression. Whole mount images were generated to assess vaso-obliteration at P12 and neovascularization at P17.
RESULTS:
Emp2 KO OIR mice demonstrated a decrease in pathologic neovascularization at P17 compared with WT OIR mice through evaluation of retinal vascular whole mount images. This protection was accompanied by a decrease in Hif1? at P12 and VEGFA expression at P17 in Emp2 KO animals compared with the WT animals in OIR conditions. Collectively, our results suggest that EMP2 enhances the effects of neovascularization through modulation of angiogenic signaling.
CONCLUSIONS:
The protection of Emp2 KO mice against pathologic neovascularization through attenuation of HIF and VEGF upregulation in OIR suggests that hypoxia-induced upregulation of EMP2 expression in the neuroretina modulates HIF-mediated neuroretinal VEGF expression
Distinct Cellular Profiles of Hif1a and Vegf mRNA Localization in Microglia, Astrocytes and Neurons during a Period of Vascular Maturation in the Auditory Brainstem of Neonate Rats
Chang, D;Brown, Q;Tsui, G;He, Y;Liu, J;Shi, L;Rodríguez-Contreras, A;
| DOI: 10.3390/brainsci11070944
Defining the relationship between vascular development and the expression of hypoxia-inducible factors (Hifs) and vascular endothelial growth factor (Vegf) in the auditory brainstem is important to understand how tissue hypoxia caused by oxygen shortage contributes to sensory deficits in neonates. In this study, we used histology, molecular labeling, confocal microscopy and 3D image processing methods to test the hypothesis that significant maturation of the vascular bed in the medial nucleus of the trapezoid body (MNTB) occurs during the postnatal period that precedes hearing onset. Isolectin-B4 histochemistry experiments suggested that the MNTB vasculature becomes more elaborate between P5 and P10. When combined with a cell proliferation marker and immunohistochemistry, we found that vascular growth coincides with a switch in the localization of proliferating cells to perivascular locations, and an increase in the density of microglia within the MNTB. Furthermore, microglia were identified as perivascular cells with proliferative activity during the period of vascular maturation. Lastly, combined in situ hybridization and immunohistochemistry experiments showed distinct profiles of Hif1a and Vegf mRNA localization in microglia, astrocytes and MNTB principal neurons. These results suggest that different cells of the neuro-glio-vascular unit are likely targets of hypoxic insult in the auditory brainstem of neonate rats.
Oxidative Medicine and Cellular Longevity
Kirschner, K;Kelterborn, S;Stehr, H;Penzlin, J;Jacobi, C;Endesfelder, S;Sieg, M;Kruppa, J;Dame, C;Sciesielski, L;
| DOI: 10.1155/2022/9714669
During gestation, the most drastic change in oxygen supply occurs with the onset of ventilation after birth. As the too early exposure of premature infants to high arterial oxygen pressure leads to characteristic diseases, we studied the adaptation of the oxygen sensing system and its targets, the hypoxia-inducible factor- (HIF-) regulated genes (HRGs) in the developing lung. We draw a detailed picture of the oxygen sensing system by integrating information from qPCR, immunoblotting, in situ hybridization, and single-cell RNA sequencing data in ex vivo and in vivo models. HIF1α protein was completely destabilized with the onset of pulmonary ventilation, but did not coincide with expression changes in bona fide HRGs. We observed a modified composition of the HIF-PHD system from intrauterine to neonatal phases: Phd3 was significantly decreased, while Hif2a showed a strong increase and the Hif3a isoform Ipas exclusively peaked at P0. Colocalization studies point to the Hif1a-Phd1 axis as the main regulator of the HIF-PHD system in mouse lung development, complemented by the Hif3a-Phd3 axis during gestation. Hif3a isoform expression showed a stepwise adaptation during the periods of saccular and alveolar differentiation. With a strong hypoxic stimulus, lung ex vivo organ cultures displayed a functioning HIF system at every developmental stage. Approaches with systemic hypoxia or roxadustat treatment revealed only a limited in vivo response of HRGs. Understanding the interplay of the oxygen sensing system components during the transition from saccular to alveolar phases of lung development might help to counteract prematurity-associated diseases like bronchopulmonary dysplasia.
Wnt and Src signals converge on YAP-TEAD to drive intestinal regeneration
Guillermin, O;Angelis, N;Sidor, CM;Ridgway, R;Baulies, A;Kucharska, A;Antas, P;Rose, MR;Cordero, J;Sansom, O;Li, VSW;Thompson, BJ;
PMID: 33950519 | DOI: 10.15252/embj.2020105770
Wnt signalling induces a gradient of stem/progenitor cell proliferation along the crypt-villus axis of the intestine, which becomes expanded during intestinal regeneration or tumour formation. The YAP transcriptional co-activator is known to be required for intestinal regeneration, but its mode of regulation remains controversial. Here we show that the YAP-TEAD transcription factor is a key downstream effector of Wnt signalling in the intestine. Loss of YAP activity by Yap/Taz conditional knockout results in sensitivity of crypt stem cells to apoptosis and reduced cell proliferation during regeneration. Gain of YAP activity by Lats1/2 conditional knockout is sufficient to drive a crypt hyperproliferation response. In particular, Wnt signalling acts transcriptionally to induce YAP and TEAD1/2/4 expression. YAP normally localises to the nucleus only in crypt base stem cells, but becomes nuclear in most intestinal epithelial cells during intestinal regeneration after irradiation, or during organoid growth, in a Src family kinase-dependent manner. YAP-driven crypt expansion during regeneration involves an elongation and flattening of the Wnt signalling gradient. Thus, Wnt and Src-YAP signals cooperate to drive intestinal regeneration.