ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
JCI insight
2022 Dec 15
Sieber, P;Schäfer, A;Lieberherr, R;Caimi, SL;Lüthi, U;Ryge, J;Bergmann, JH;Le Goff, F;Stritt, M;Blattmann, P;Renault, B;Rammelt, P;Sempere, B;Freti, D;Studer, R;White, ES;Birker-Robaczewska, M;Boucher, M;Nayler, O;
PMID: 36520540 | DOI: 10.1172/jci.insight.154719
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):E5262-71.
Tan SH, Senarath-Yapa K, Chung MT, Longaker MT, Wu JY, Nusse R.
Thrombosis and haemostasis
2022 Dec 03
Ye, M;Ni, Q;Wang, H;Wang, Y;Yao, Y;Li, Y;Wang, W;Yang, S;Chen, J;Lv, L;Zhao, Y;Xue, G;Guo, X;Zhang, L;
PMID: 36462769 | DOI: 10.1055/s-0042-1757875
Scientific reports
2022 Mar 30
Minatoguchi, S;Saito, S;Furuhashi, K;Sawa, Y;Okazaki, M;Shimamura, Y;Kaihan, AB;Hashimoto, Y;Yasuda, Y;Hara, A;Mizutani, Y;Ando, R;Kato, N;Ishimoto, T;Tsuboi, N;Esaki, N;Matsuyama, M;Shiraki, Y;Kobayashi, H;Asai, N;Enomoto, A;Maruyama, S;
PMID: 35354870 | DOI: 10.1038/s41598-022-09331-5
ACR open rheumatology
2021 May 01
Jones, K;Angelozzi, M;Gangishetti, U;Haseeb, A;de Charleroy, C;Lefebvre, V;Bhattaram, P;
PMID: 33931959 | DOI: 10.1002/acr2.11255
Basic Res Cardiol.
2018 Jun 04
Mouton AJ, DeLeon-Pennell KY, Rivera Gonzalez OJ, Flynn ER, Freeman TC, Saucerman JJ, Garrett MR, Ma Y, Harmancey R, Lindsey ML.
PMID: 29868933 | DOI: 10.1007/s00395-018-0686-x
In response to myocardial infarction (MI), cardiac macrophages regulate inflammation and scar formation. We hypothesized that macrophages undergo polarization state changes over the MI time course and assessed macrophage polarization transcriptomic signatures over the first week of MI. C57BL/6 J male mice (3-6 months old) were subjected to permanent coronary artery ligation to induce MI, and macrophages were isolated from the infarct region at days 1, 3, and 7 post-MI. Day 0, no MI resident cardiac macrophages served as the negative MI control. Whole transcriptome analysis was performed using RNA-sequencing on n = 4 pooled sets for each time. Day 1 macrophages displayed a unique pro-inflammatory, extracellular matrix (ECM)-degrading signature. By flow cytometry, day 0 macrophages were largely F4/80highLy6Clow resident macrophages, whereas day 1 macrophages were largely F4/80lowLy6Chigh infiltrating monocytes. Day 3 macrophages exhibited increased proliferation and phagocytosis, and expression of genes related to mitochondrial function and oxidative phosphorylation, indicative of metabolic reprogramming. Day 7 macrophages displayed a pro-reparative signature enriched for genes involved in ECM remodeling and scar formation. By triple in situ hybridization, day 7 infarct macrophages in vivo expressed collagen I and periostin mRNA. Our results indicate macrophages show distinct gene expression profiles over the first week of MI, with metabolic reprogramming important for polarization. In addition to serving as indirect mediators of ECM remodeling, macrophages are a direct source of ECM components. Our study is the first to report the detailed changes in the macrophage transcriptome over the first week of MI.
Biochimica et biophysica acta. Molecular basis of disease
2022 Jun 27
Ha, S;Yang, Y;Kim, BM;Kim, J;Son, M;Kim, D;Yu, HS;Im, D;Chung, HY;Chung, KW;
PMID: 35772632 | DOI: 10.1016/j.bbadis.2022.166474
Cell Metab.
2016 Sep 09
Xin Y, Kim J, Okamoto H, Ni M, Wei Y, Adler C, Murphy AJ, Yancopoulos GD, Lin C, Gromada J.
PMID: 27667665 | DOI: 10.1016/j.cmet.2016.08.018
Pancreatic islet cells are critical for maintaining normal blood glucose levels, and their malfunction underlies diabetes development and progression. We used single-cell RNA sequencing to determine the transcriptomes of 1,492 human pancreatic α, β, δ, and PP cells from non-diabetic and type 2 diabetes organ donors. We identified cell-type-specific genes and pathways as well as 245 genes with disturbed expression in type 2 diabetes. Importantly, 92% of the genes have not previously been associated with islet cell function or growth. Comparison of gene profiles in mouse and human α and β cells revealed species-specific expression. All data are available for online browsing and download and will hopefully serve as a resource for the islet research community.
Am J Respir Crit Care Med. 2018 Dec 15.
2018 Dec 15
Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC, Chiu S, Fernandez R, Akbarpour M, Chen CI, Ren Z, Verma R, Abdala-Valencia H, Nam K, Chi M, Han S, Gonzalez-Gonzalez FJ, Soberanes S, Watanabe S, Williams KJN, Flozak AS, Nicholson TT, Morgan VK, Winter DR, Hinchcliff M, Hrusch CL, Guzy RD, Bonham CA, Sperling AI, Bag R, Hamanaka RB, Mutlu GM, Yeldandi AV, Marshall SA, Shilatifard A, Amaral LAN, Perlman H, Sznajder JI, Argento AC, Gillespie CT, Dematte J, Jain M, Singer BD, Ridge KM, Lam AP, Bharat A, Bhorade SM, Gottardi CJ, Budinger GRS, Misharin AV.
PMID: 30554520 | DOI: 10.1164/rccm.201712-2410OC
Proc Natl Acad Sci U S A.
2016 Feb 22
Lim X, Tan SH, Yu KL, Lim SB, Nusse R.
PMID: 26903625 | DOI: -
How stem cells maintain their identity and potency as tissues change during growth is not well understood. In mammalian hair, it is unclear how hair follicle stem cells can enter an extended period of quiescence during the resting phase but retain stem cell potential and be subsequently activated for growth. Here, we use lineage tracing and gene expression mapping to show that the Wnt target gene Axin2 is constantly expressed throughout the hair cycle quiescent phase in outer bulge stem cells that produce their own Wnt signals. Ablating Wnt signaling in the bulge cells causes them to lose their stem cell potency to contribute to hair growth and undergo premature differentiation instead. Bulge cells express secreted Wnt inhibitors, including Dickkopf (Dkk) and secreted frizzled-related protein 1 (Sfrp1). However, the Dickkopf 3 (Dkk3) protein becomes localized to the Wnt-inactive inner bulge that contains differentiated cells. We find that Axin2 expression remains confined to the outer bulge, whereas Dkk3 continues to be localized to the inner bulge during the hair cycle growth phase. Our data suggest that autocrine Wnt signaling in the outer bulge maintains stem cell potency throughout hair cycle quiescence and growth, whereas paracrine Wnt inhibition of inner bulge cells reinforces differentiation.
Developmental cell
2022 Oct 24
Muhl, L;Mocci, G;Pietilä, R;Liu, J;He, L;Genové, G;Leptidis, S;Gustafsson, S;Buyandelger, B;Raschperger, E;Hansson, EM;Björkegren, JLM;Vanlandewijck, M;Lendahl, U;Betsholtz, C;
PMID: 36283392 | DOI: 10.1016/j.devcel.2022.09.015
J Neurosci.
2019 Mar 29
Wu D, Schieren I, Qian Y, Zhang C, Jessell TM, de Nooij JC.
PMID: 30926747 | DOI: 10.1523/JNEUROSCI.2671-18.2019
Proprioceptive feedback from group Ia/II muscle spindle afferents and group Ib Golgi tendon afferents is critical for the normal execution of most motor tasks, yet how these distinct proprioceptor subtypes emerge during development remains poorly understood. Using molecular genetic approaches in mice of either sex, we identified twenty-four transcripts that have not previously been associated with a proprioceptor identity. Combinatorial expression analyses of these markers reveal at least three molecularly distinct proprioceptor subtypes. In addition, we find that twelve of these transcripts are expressed well after proprioceptors innervate their respective sensory receptors, and expression of three of these markers - including the heart development molecule Heg1 - is significantly reduced in mice that lack muscle spindles. These data reveal Heg1 as a putative marker for proprioceptive muscle spindle afferents. Moreover, they suggest that the phenotypic specialization of functionally distinct proprioceptor subtypes depends, in part, on extrinsic sensory receptor organ-derived signals.Significance statement:Sensory feedback from muscle spindle (MS) and Golgi tendon organ (GTO) sensory end-organs is critical for normal motor control, but how distinct MS and GTO afferent sensory neurons emerge during development remains poorly understood. Using (bulk) transcriptome analysis of genetically identified proprioceptors, this work reveals molecular markers for distinct proprioceptor subsets, including some that appear selectively expressed in MS afferents. Detailed analysis of the expression of these transcripts provides evidence that MS/GTO afferent subtype phenotypes may, at least in part, emerge through extrinsic - sensory end-organ derived - signals.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com