Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (82)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • (-) Remove Wnt5a filter Wnt5a (31)
  • (-) Remove CXCL10 filter CXCL10 (31)
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Multiplex Fluorescent Assay (16) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Red assay (11) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Fluorescent Multiplex Assay (10) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.0 Assay (8) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (8) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Duplex (5) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope (3) Apply RNAscope filter
  • RNAscope 2.5 LS Assay (2) Apply RNAscope 2.5 LS Assay filter
  • BASEscope Assay RED (1) Apply BASEscope Assay RED filter
  • RNAscope 2.5 HD duplex reagent kit (1) Apply RNAscope 2.5 HD duplex reagent kit filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter

Research area

  • Neuroscience (15) Apply Neuroscience filter
  • Cancer (13) Apply Cancer filter
  • Inflammation (10) Apply Inflammation filter
  • Development (9) Apply Development filter
  • Stem Cells (7) Apply Stem Cells filter
  • Infectious Disease (6) Apply Infectious Disease filter
  • Other (6) Apply Other filter
  • Developmental (5) Apply Developmental filter
  • Covid (2) Apply Covid filter
  • Infectious (2) Apply Infectious filter
  • Kidney (2) Apply Kidney filter
  • Liver (2) Apply Liver filter
  • Other: Kidney (2) Apply Other: Kidney filter
  • Alzheimer's Disease (1) Apply Alzheimer's Disease filter
  • Atherogenesis (1) Apply Atherogenesis filter
  • Bone (1) Apply Bone filter
  • CGT (1) Apply CGT filter
  • Chronic Kidney Disease (1) Apply Chronic Kidney Disease filter
  • Colitis (1) Apply Colitis filter
  • Endocrine (1) Apply Endocrine filter
  • Endrocrinology (1) Apply Endrocrinology filter
  • Evolution (1) Apply Evolution filter
  • human health (1) Apply human health filter
  • Immuno (1) Apply Immuno filter
  • Infectious Disease: Ebola Virus (1) Apply Infectious Disease: Ebola Virus filter
  • Inflammtion (1) Apply Inflammtion filter
  • Kidney Fibrosis (1) Apply Kidney Fibrosis filter
  • Lung (1) Apply Lung filter
  • Nephrology (1) Apply Nephrology filter
  • other: Aging (1) Apply other: Aging filter
  • Other: Heart (1) Apply Other: Heart filter
  • Other: Hypertension (1) Apply Other: Hypertension filter
  • Other: lymphadenopathy (1) Apply Other: lymphadenopathy filter
  • Other: Metabolism (1) Apply Other: Metabolism filter
  • Other: Nephrology (1) Apply Other: Nephrology filter
  • Other: Single-cell transcriptomics (1) Apply Other: Single-cell transcriptomics filter
  • Oxygen (1) Apply Oxygen filter
  • Pulmonary Hypertension (1) Apply Pulmonary Hypertension filter
  • Pulmonology (1) Apply Pulmonology filter
  • Regeneration (1) Apply Regeneration filter
  • Reproduction (1) Apply Reproduction filter
  • T Cells (1) Apply T Cells filter
  • Traumatic brain injury (1) Apply Traumatic brain injury filter

Category

  • Publications (82) Apply Publications filter
γδ T cells and the immune response to respiratory syncytial virus infection.

Vet Immunol Immunopathol.

2016 Feb 21

McGill JL, Sacco RE.
PMID: 26923879 | DOI: 10.1016/j.vetimm.2016.02.012

γδ T cells are a subset of nonconventional T cells that play a critical role in bridging the innate and adaptive arms of the immune system. γδ T cells are particularly abundant in ruminant species and may constitute up to 60% of the circulating lymphocyte pool in young cattle. The frequency of circulating γδ T cells is highest in neonatal calves and declines as the animal ages, suggesting these cells may be particularly important in the immune system of the very young. Bovine respiratory syncytial virus (BRSV) is a significant cause of respiratory infection in calves, and is most severe in animals under one year of age. BRSV is also a significant factor in the development of bovine respiratory disease complex (BRDC), the leading cause of morbidity and mortality in feedlot cattle. Human respiratory syncytial virus (RSV) is closely related to BRSV and a leading cause of lower respiratory tract infection in infants and children worldwide. BRSV infection in calves shares striking similarities with RSV infection in human infants. To date, there have been few studies defining the role of γδ T cells in the immune response to BRSV or RSV infection in animals or humans, respectively. However, emerging evidence suggests that γδ T cells may play a critical role in the early recognition of infection and in shaping the development of the adaptive immune response through inflammatory chemokine and cytokine production. Further, while it is clear that γδ T cells accumulate in the lungs during BRSV and RSV infection, their role in protection vs. immunopathology remains unclear. This review will summarize what is currently known about the role of γδ T cells in the immune response to BRSV and BRDC in cattle, and where appropriate, draw parallels to the role of γδ T cells in the human response to RSV infection.

Unique expression of the atypical mitochondrial subunit NDUFA4L2 in cerebral pericytes fine tunes HIF activity in response to hypoxia

Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism

2022 Aug 04

Mesa-Ciller, C;Turiel, G;Guajardo-Grence, A;Lopez-Rodriguez, AB;Egea, J;De Bock, K;Aragonés, J;Urrutia, AA;
PMID: 35929074 | DOI: 10.1177/0271678X221118236

A central response to insufficient cerebral oxygen delivery is a profound reprograming of metabolism, which is mainly regulated by the Hypoxia Inducible Factor (HIF). Among other responses, HIF induces the expression of the atypical mitochondrial subunit NDUFA4L2. Surprisingly, NDUFA4L2 is constitutively expressed in the brain in non-hypoxic conditions. Analysis of publicly available single cell transcriptomic (scRNA-seq) data sets coupled with high-resolution multiplexed fluorescence RNA in situ hybridization (RNA F.I.S.H.) revealed that in the murine and human brain NDUFA4L2 is exclusively expressed in mural cells with the highest levels found in pericytes and declining along the arteriole-arterial smooth muscle cell axis. This pattern was mirrored by COX4I2, another atypical mitochondrial subunit. High NDUFA4L2 expression was also observed in human brain pericytes in vitro, decreasing when pericytes are muscularized and further induced by HIF stabilization in a PHD2/PHD3 dependent manner. In vivo, Vhl conditional inactivation in pericyte targeting Ng2-cre transgenic mice dramatically induced NDUFA4L2 expression. Finally NDUFA4L2 inactivation in pericytes increased oxygen consumption and therefore the degree of HIF pathway induction in hypoxia. In conclusion our work reveals that NDUFA4L2 together with COX4I2 is a key hypoxic-induced metabolic marker constitutively expressed in pericytes coupling mitochondrial oxygen consumption and cellular hypoxia response.
Piezo2 expression and its alteration by mechanical forces in mouse mesangial cells and renin-producing cells

Scientific reports

2022 Mar 10

Mochida, Y;Ochiai, K;Nagase, T;Nonomura, K;Akimoto, Y;Fukuhara, H;Sakai, T;Matsumura, G;Yamaguchi, Y;Nagase, M;
PMID: 35273307 | DOI: 10.1038/s41598-022-07987-7

The kidney plays a central role in body fluid homeostasis. Cells in the glomeruli and juxtaglomerular apparatus sense mechanical forces and modulate glomerular filtration and renin release. However, details of mechanosensory systems in these cells are unclear. Piezo2 is a recently identified mechanically activated ion channel found in various tissues, especially sensory neurons. Herein, we examined Piezo2 expression and regulation in mouse kidneys. RNAscope in situ hybridization revealed that Piezo2 expression was highly localized in mesangial cells and juxtaglomerular renin-producing cells. Immunofluorescence assays detected GFP signals in mesangial cells and juxtaglomerular renin-producing cells of Piezo2GFP reporter mice. Piezo2 transcripts were observed in the Foxd1-positive stromal progenitor cells of the metanephric mesenchyme in the developing mouse kidney, which are precursors of mesangial cells and renin-producing cells. In a mouse model of dehydration, Piezo2 expression was downregulated in mesangial cells and upregulated in juxtaglomerular renin-producing cells, along with the overproduction of renin and enlargement of the area of renin-producing cells. Furthermore, the expression of the renin coding gene Ren1 was reduced by Piezo2 knockdown in cultured juxtaglomerular As4.1 cells under static and stretched conditions. These data suggest pivotal roles for Piezo2 in the regulation of glomerular filtration and body fluid balance.
Upregulation of Piezo2 in the mesangial, renin, and perivascular mesenchymal cells of the kidney of Dahl salt-sensitive hypertensive rats and its reversal by esaxerenone

Hypertension research : official journal of the Japanese Society of Hypertension

2023 Feb 21

Ochiai, K;Mochida, Y;Nagase, T;Fukuhara, H;Yamaguchi, Y;Nagase, M;
PMID: 36810623 | DOI: 10.1038/s41440-023-01219-9

The recent discovery of mechanosensitive ion channels has promoted mechanobiological research in the field of hypertension and nephrology. We previously reported Piezo2 expression in mouse mesangial and juxtaglomerular renin-producing cells, and its modulation by dehydration. This study aimed to investigate how Piezo2 expression is altered in hypertensive nephropathy. The effects of the nonsteroidal mineralocorticoid receptor blocker, esaxerenone, were also analyzed. Four-week-old Dahl salt-sensitive rats were randomly assigned to three groups: rats fed a 0.3% NaCl diet (DSN), rats fed a high 8% NaCl diet (DSH), and rats fed a high salt diet supplemented with esaxerenone (DSH + E). After six weeks, DSH rats developed hypertension, albuminuria, glomerular and vascular injuries, and perivascular fibrosis. Esaxerenone effectively decreased blood pressure and ameliorated renal damage. In DSN rats, Piezo2 was expressed in Pdgfrb-positive mesangial and Ren1-positive cells. Piezo2 expression in these cells was enhanced in DSH rats. Moreover, Piezo2-positive cells accumulated in the adventitial layer of intrarenal small arteries and arterioles in DSH rats. These cells were positive for Pdgfrb, Col1a1, and Col3a1, but negative for Acta2 (αSMA), indicating that they were perivascular mesenchymal cells different from myofibroblasts. Piezo2 upregulation was reversed by esaxerenone treatment. Furthermore, Piezo2 inhibition by siRNA in the cultured mesangial cells resulted in upregulation of Tgfb1 expression. Cyclic stretch also upregulated Tgfb1 in both transfections of control siRNA and Piezo2 siRNA. Our findings suggest that Piezo2 may have a contributory role in modulating the pathogenesis of hypertensive nephrosclerosis and have also highlighted the therapeutic effects of esaxerenone on salt-induced hypertensive nephropathy. Mechanochannel Piezo2 is known to be expressed in the mouse mesangial cells and juxtaglomerular renin-producing cells, and this was confirmed in normotensive Dahl-S rats. In salt-induced hypertensive Dahl-S rats, Piezo2 upregulation was observed in the mesangial cells, renin cells, and notably, perivascular mesenchymal cells, suggesting its involvement in kidney fibrosis.
Naringenin potentiates anti-tumor immunity against oral cancer by inducing lymph node CD169-positive macrophage activation and cytotoxic T cell infiltration

Cancer immunology, immunotherapy : CII

2022 Jan 19

Kawaguchi, S;Kawahara, K;Fujiwara, Y;Ohnishi, K;Pan, C;Yano, H;Hirosue, A;Nagata, M;Hirayama, M;Sakata, J;Nakashima, H;Arita, H;Yamana, K;Gohara, S;Nagao, Y;Maeshiro, M;Iwamoto, A;Hirayama, M;Yoshida, R;Komohara, Y;Nakayama, H;
PMID: 35044489 | DOI: 10.1007/s00262-022-03149-w

The CD169+ macrophages in lymph nodes are implicated in cytotoxic T lymphocyte (CTL) activation and are associated with improved prognosis in several malignancies. Here, we investigated the significance of CD169+ macrophages in oral squamous cell carcinoma (OSCC). Further, we tested the anti-tumor effects of naringenin, which has been previously shown to activate CD169+ macrophages, in a murine OSCC model. Immunohistochemical analysis for CD169 and CD8 was performed on lymph node and primary tumor specimens from 89 patients with OSCC. We also evaluated the effects of naringenin on two murine OSCC models. Increased CD169+ macrophage counts in the regional lymph nodes correlated with favorable prognosis and CD8+ cell counts within tumor sites. Additionally, naringenin suppressed tumor growth in two murine OSCC models. The mRNA levels of CD169, interleukin (IL)-12, and C-X-C motif chemokine ligand 10 (CXCL10) in lymph nodes and CTL infiltration in tumors significantly increased following naringenin administration in tumor-bearing mice. These results suggest that CD169+ macrophages in lymph nodes are involved in T cell-mediated anti-tumor immunity and could be a prognostic marker for patients with OSCC. Moreover, naringenin is a new potential agent for CD169+ macrophage activation in OSCC treatment.
Localization of natriuretic peptide receptors A, B, and C in healthy and diseased mouse kidneys

Pflugers Archiv : European journal of physiology

2022 Dec 08

Heinl, ES;Broeker, KA;Lehrmann, C;Heydn, R;Krieger, K;Ortmaier, K;Tauber, P;Schweda, F;
PMID: 36480070 | DOI: 10.1007/s00424-022-02774-9

The natriuretic peptides (NPs) ANP (atrial natriuretic peptide) and BNP (B-type natriuretic peptide) mediate their widespread effects by activating the natriuretic peptide receptor-A (NPR-A), while C-type natriuretic peptide (CNP) acts via natriuretic peptide receptor-B (NPR-B). NPs are removed from the circulation by internalization via the natriuretic peptide clearance receptor natriuretic peptide receptor-C (NPR-C). In addition to their well-known functions, for instance on blood pressure, all three NPs confer significant cardioprotection and renoprotection. Since neither the NP-mediated renal functions nor the renal target cells of renoprotection are completely understood, we performed systematic localization studies of NP receptors using in situ hybridization (RNAscope) in mouse kidneys. NPR-A mRNA is highly expressed in glomeruli (mainly podocytes), renal arterioles, endothelial cells of peritubular capillaries, and PDGFR-receptor β positive (PDGFR-β) interstitial cells. No NPR-A mRNA was detected by RNAscope in the tubular system. In contrast, NPR-B expression is highest in proximal tubules. NPR-C is located in glomeruli (mainly podocytes), in endothelial cells and PDGFR-β positive cells. To test for a possible regulation of NPRs in kidney diseases, their distribution was studied in adenine nephropathy. Signal intensity of NPR-A and NPR-B mRNA was reduced while their spatial distribution was unaltered compared with healthy kidneys. In contrast, NPR-C mRNA signal was markedly enhanced in cell clusters of myofibroblasts in fibrotic areas of adenine kidneys. In conclusion, the primary renal targets of ANP and BNP are glomerular, vascular, and interstitial cells but not the tubular compartment, while the CNP receptor NPR-B is highly expressed in proximal tubules. Further studies are needed to clarify the function and interplay of this specific receptor expression pattern.
Low nephron endowment increases susceptibility to renal stress and chronic kidney disease

JCI insight

2023 Jan 10

Good, PI;Li, L;Hurst, HA;Serrano-Herrera, IM;Xu, K;Rao, M;Bateman, DA;Al-Awqati, Q;D'Agati, VD;Costantini, F;Lin, F;
PMID: 36626229 | DOI: 10.1172/jci.insight.161316

Preterm birth results in low nephron endowment and increased risk of acute kidney injury (AKI) and chronic kidney disease (CKD). To understand the pathogenesis of AKI and CKD in preterm humans, we generated novel mouse models with a 30-70% reduction in nephron number by inhibiting or deleting Ret tyrosine kinase in the developing ureteric bud. These mice developed glomerular and tubular hypertrophy followed by the transition to CKD, recapitulating the renal pathological changes seen in humans born preterm. We injected neonatal mice with gentamicin, a ubiquitous nephrotoxic exposure in preterm infants, and detected more severe proximal tubular injury in mice with low nephron number compared to controls with normal nephron number. Mice with low nephron number have reduced proliferative repair with more rapid development of CKD. Furthermore, mice had more profound inflammation with highly elevated levels of MCP-1 and CXCL10, produced in part by damaged proximal tubules. Our study directly links low nephron endowment with postnatal renal hypertrophy, which in this model is maladaptive and results in CKD. Underdeveloped kidneys are more susceptible to gentamicin-induced AKI, suggesting that AKI in the setting of low nephron number is more severe and further increases the risk of CKD in this vulnerable population.
COX-2-derived PGE2 triggers hyperplastic renin expression and hyperreninemia in aldosterone synthase-deficient mice.

Pflugers Arch.

2018 Feb 17

Karger C, Machura K, Schneider A, Hugo C, Todorov VT, Kurtz A.
PMID: 29455241 | DOI: 10.1007/s00424-018-2118-z

Pharmacological inhibition or genetic loss of function defects of the renin angiotensin aldosterone system (RAAS) causes compensatory renin cell hyperplasia and hyperreninemia. The triggers for the compensatory stimulation of renin synthesis and secretion in this situation may be multimodal. Since cyclooxygenase-2 (COX-2) expression in the macula densa is frequently increased in states of a defective RAAS, we have investigated a potential role of COX-2 and its derived prostaglandins for renin expression and secretion in aldosterone synthase-deficient mice (AS-/-) as a model for a genetic defect of the RAAS. In comparison with wild-type mice (WT), AS-/- mice had 9-fold and 30-fold increases of renin mRNA and of plasma renin concentrations (PRC), respectively. Renin immunoreactivity in the kidney cortex of AS-/- mice was 10-fold higher than in WT. Macula densa COX-2 expression was 5-fold increased in AS-/- kidneys relative to WT kidneys. Treatment of AS-/- mice with the COX-2 inhibitor SC-236 for 1 week lowered both renal renin mRNA and PRC by 70%. Hyperplastic renin cells in AS-/-kidneys were found to express the prostaglandin E2 receptors EP2 and EP4. Global deletion of EP2 receptors did not alter renin mRNA nor PRC values in AS-/- mice. Renin cell-specific inducible deletion of the EP4 receptor lowered renin mRNA and PRC by 25% in AS-/- mice. Renin cell-specific inducible deletion of the EP4 receptor in combination with global deletion of the EP2 receptor lowered renin mRNA and PRC by 70-75% in AS-/- mice. Lineage tracing of renin-expressing cells revealed that deletion of EP2 and EP4 leads to a preferential downregulation of perivascular renin expression. Our findings suggest that increased macula densa COX-2 activity in AS-/- mice triggers perivascular renin expression and secretion via prostaglandin E2.

Convergent deployment of ancestral functions during the evolution of mammalian flight membranes

Science advances

2023 Mar 24

Feigin, CY;Moreno, JA;Ramos, R;Mereby, SA;Alivisatos, A;Wang, W;van Amerongen, R;Camacho, J;Rasweiler, JJ;Behringer, RR;Ostrow, B;Plikus, MV;Mallarino, R;
PMID: 36961889 | DOI: 10.1126/sciadv.ade7511

Lateral flight membranes, or patagia, have evolved repeatedly in diverse mammalian lineages. While little is known about patagium development, its recurrent evolution may suggest a shared molecular basis. By combining transcriptomics, developmental experiments, and mouse transgenics, we demonstrate that lateral Wnt5a expression in the marsupial sugar glider (Petaurus breviceps) promotes the differentiation of its patagium primordium. We further show that this function of Wnt5a reprises ancestral roles in skin morphogenesis predating mammalian flight and has been convergently used during patagium evolution in eutherian bats. Moreover, we find that many genes involved in limb development have been redeployed during patagium outgrowth in both the sugar glider and bat. Together, our findings reveal that deeply conserved genetic toolkits contribute to the evolutionary transition to flight in mammals.
Connexin 43 Controls the Astrocyte Immunoregulatory Phenotype

Brain Sci.

2018 Mar 22

Boulay AC, Gilbert A, Oliveira Moreira V, Blugeon C, Perrin S, Pouch J, Le Crom S, Ducos B, Cohen-Salmon M.
PMID: 29565275 | DOI: 10.3390/brainsci8040050

Astrocytes are the most abundant glial cells of the central nervous system and have recently been recognized as crucial in the regulation of brain immunity. In most neuropathological conditions, astrocytes are prone to a radical phenotypical change called reactivity, which plays a key role in astrocyte contribution to neuroinflammation. However, how astrocytes regulate brain immunity in healthy conditions is an understudied question. One of the astroglial molecule involved in these regulations might be Connexin 43 (Cx43), a gap junction protein highly enriched in astrocyte perivascular endfeet-terminated processes forming the glia limitans. Indeed, Cx43 deletion in astrocytes (Cx43KO) promotes a continuous immune recruitment and an autoimmune response against an astrocyte protein, without inducing any brain lesion. To investigate the molecular basis of this unique immune response, we characterized the polysomal transcriptome of hippocampal astrocytes deleted for Cx43. Our results demonstrate that, in the absence of Cx43, astrocytes adopt an atypical reactive status with no change in most canonical astrogliosis markers, but with an upregulation of molecules promoting immune recruitment, complement activation as well as anti-inflammatory processes. Intriguingly, while several of these upregulated transcriptional events suggested an activation of the γ-interferon pathway, no increase in this cytokine or activation of related signaling pathways were found in Cx43KO. Finally, deletion of astroglial Cx43 was associated with the upregulation of several angiogenic factors, consistent with an increase in microvascular density in Cx43KO brains. Collectively, these results strongly suggest that Cx43 controls immunoregulatory and angiogenic properties of astrocytes.

DETERMINATION OF SINGLE NUCLEOTIDE POLYMORPHISM (RS566926) OF WNT5A IN NONSYNDROMIC CLEFT LIP AND PALATE IN A PAKISTANI POPULATION

Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology

2021 Jul 01

Anjum, R;Mehmood, S;Nagi, A;Shahzad, M;Chuadhry, S;
| DOI: 10.1016/j.oooo.2021.03.042

Background Orofacial clefts are the most common birth defects affecting 1 in 750 live births worldwide. Various genetic loci to be involved in nonsyndromic cleft lip and palate has been identified with a variation among populations. Wnt5a is expressed in the frontonasal prominence and maxillary process, which fuse to form the primary palate. Therefore, its dysregulation can lead to certain birth defects along with other diseases. Single nucleotide polymorphism (rs566926) in Wnt5A shows a significant association with nonsyndromic cleft lip and palate in Brazilian and European American populations. Objective The aim of the present study was to describe single nucleotide polymorphism (SNP; rs566926) in patients with nonsyndromic cleft lip and palate in a Pakistani population. Methods This study was conducted on 120 patients with nonsyndromic cleft lip and palate. Demographics and phenotypes were noted. Blood samples were collected in ethylenediaminetetraacetic acid vials. DNA was extracted followed by conventional polymerase chain reaction. SNP (566926) was determined by Sanger sequencing. Data were analyzed using NCBI Blast and SPSS (24.0). Results The mean age of n = 30 patients was 51.33 ± 61.33 months. Sixty percent were male and 40% were female. Regarding cleft types, 70% were both cleft lip and palate, 26% cleft lip only, and 3.3% cleft palate only. Heterozygous polymorphism (T/G) was seen in 33.3% of patients with both cleft lip and palate with bilateral involvement and heterozygous polymorphism (T) was seen in 16.6%. Conclusions SNP in the WNT5A gene is associated with cleft lip and palate, supporting its involvement in pathogenesis of cleft lip and palate. Further studies are recommended to determine the role of Wnt5a genes during craniofacial development.
Endothelin receptors in renal interstitial cells do not contribute to the development of fibrosis during experimental kidney disease

Pflugers Archiv : European journal of physiology

2021 Aug 06

Neder, TH;Schrankl, J;Fuchs, MAA;Broeker, KAE;Wagner, C;
PMID: 34355294 | DOI: 10.1007/s00424-021-02604-4

Renal interstitial fibrosis is characterized by the development of myofibroblasts, originating from resident renal and immigrating cells. Myofibroblast formation and extracellular matrix production during kidney damage are triggered by various factors. Among these, endothelins have been discussed as potential modulators of renal fibrosis. Utilizing mouse models of adenine nephropathy (AN) and unilateral ureter occlusion (UUO), this study aimed to investigate the contribution of endothelin signaling in stromal mesenchymal resident renal interstitial cells. We found in controls that adenine feeding and UUO caused marked upregulations of endothelin-1 (ET-1) gene expression in endothelial and in tubular cells and a strong upregulation of ETA-receptor (ETA-R) gene expression in interstitial and mesangial cells, while the gene expression of ETB-receptor (ETB-R) did not change. Conditional deletion of ETA-R and ETB-R gene expression in the FoxD1 stromal cell compartment which includes interstitial cells significantly reduced renal ETA-R gene expression and moderately lowered renal ETB-R gene expression. ET receptor (ET-R) deletion exerted no apparent effects on kidney development nor on kidney function. Adenine feeding and UUO led to similar increases in profibrotic and proinflammatory gene expression in control as well as in ETAflflETBflfl FoxD1Cre+ mice (ET-Ko). In summary, our findings suggest that adenine feeding and UUO activate endothelin signaling in interstitial cells which is due to upregulated ETA-R expression and enhanced renal ET-1 production Our data also suggest that the activation of endothelin signaling in interstitial cells has less impact for the development of experimentally induced fibrosis.

Pages

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?