Basham KJ, Rodriguez S, Turcu AF, Lerario AM, Logan CY, Rysztak MR, Gomez-Sanchez CE, Breault DT, Koo BK, Clevers H, Nusse R, Val P, Hammer GD.
PMID: 30692207 | DOI: 10.1101/gad.317412.118
Spatiotemporal control of Wnt signaling is essential for the development and homeostasis of many tissues. The transmembrane E3 ubiquitin ligases ZNRF3 (zinc and ring finger 3) and RNF43 (ring finger protein 43) antagonize Wnt signaling by promoting degradation of frizzled receptors. ZNRF3 and RNF43 are frequently inactivated in human cancer, but the molecular and therapeutic implications remain unclear. Here, we demonstrate that adrenocortical-specific loss of ZNRF3, but not RNF43, results in adrenal hyperplasia that depends on Porcupine-mediated Wnt ligand secretion. Furthermore, we discovered a Wnt/β-catenin signaling gradient in the adrenal cortex that is disrupted upon loss of ZNRF3. Unlike β-catenin gain-of-function models, which induce high Wnt/β-catenin activation and expansion of the peripheral cortex, ZNRF3 loss triggers activation of moderate-level Wnt/β-catenin signaling that drives proliferative expansion of only the histologically and functionally distinct inner cortex. Genetically reducing β-catenin dosage significantly reverses the ZNRF3-deficient phenotype. Thus, homeostatic maintenance of the adrenal cortex is dependent on varying levels of Wnt/β-catenin activation, which is regulated by ZNRF3.
McCarthy, N;Tie, G;Madha, S;He, R;Kraiczy, J;Maglieri, A;Shivdasani, RA;
PMID: 36924771 | DOI: 10.1016/j.devcel.2023.02.012
Wnt and Rspondin (RSPO) signaling drives proliferation, and bone morphogenetic protein inhibitors (BMPi) impede differentiation, of intestinal stem cells (ISCs). Here, we identify the mouse ISC niche as a complex, multi-layered structure that encompasses distinct mesenchymal and smooth muscle populations. In young and adult mice, diverse sub-cryptal cells provide redundant ISC-supportive factors; few of these are restricted to single cell types. Niche functions refine during postnatal crypt morphogenesis, in part to oppose the dense aggregation of differentiation-promoting BMP+ sub-epithelial myofibroblasts at crypt-villus junctions. Muscularis mucosae, a specialized muscle layer, first appears during this period and supplements neighboring RSPO and BMPi sources. Components of this developing niche are conserved in human fetuses. The in vivo ablation of mouse postnatal smooth muscle increases BMP signaling activity, potently limiting a pre-weaning burst of crypt fission. Thus, distinct and progressively specialized mesenchymal cells together create the milieu that is required to propagate crypts during rapid organ growth and to sustain adult ISCs.
Yerly, L;Pich-Bavastro, C;Di Domizio, J;Wyss, T;Tissot-Renaud, S;Cangkrama, M;Gilliet, M;Werner, S;Kuonen, F;
PMID: 35986012 | DOI: 10.1038/s41467-022-32670-w
Tumors invade the surrounding tissues to progress, but the heterogeneity of cell types at the tumor-stroma interface and the complexity of their potential interactions hampered mechanistic insight required for efficient therapeutic targeting. Here, combining single-cell and spatial transcriptomics on human basal cell carcinomas, we define the cellular contributors of tumor progression. In the invasive niche, tumor cells exhibit a collective migration phenotype, characterized by the expression of cell-cell junction complexes. In physical proximity, we identify cancer-associated fibroblasts with extracellular matrix-remodeling features. Tumor cells strongly express the cytokine Activin A, and increased Activin A-induced gene signature is found in adjacent cancer-associated fibroblast subpopulations. Altogether, our data identify the cell populations and their transcriptional reprogramming contributing to the spatial organization of the basal cell carcinoma invasive niche. They also demonstrate the power of integrated spatial and single-cell multi-omics to decipher cancer-specific invasive properties and develop targeted therapies.
Liang, T;Hu, Y;Zhang, H;Xu, Q;Smith, CE;Zhang, C;Kim, JW;Wang, SK;Saunders, TL;Lu, Y;Hu, JC;Simmer, JP;
PMID: 34667213 | DOI: 10.1038/s41598-021-00219-4
Non-syndromic inherited defects of tooth dentin are caused by two classes of dominant negative/gain-of-function mutations in dentin sialophosphoprotein (DSPP): 5' mutations affecting an N-terminal targeting sequence and 3' mutations that shift translation into the - 1 reading frame. DSPP defects cause an overlapping spectrum of phenotypes classified as dentin dysplasia type II and dentinogenesis imperfecta types II and III. Using CRISPR/Cas9, we generated a Dspp-1fs mouse model by introducing a FLAG-tag followed by a single nucleotide deletion that translated 493 extraneous amino acids before termination. Developing incisors and/or molars from this mouse and a DsppP19L mouse were characterized by morphological assessment, bSEM, nanohardness testing, histological analysis, in situ hybridization and immunohistochemistry. DsppP19L dentin contained dentinal tubules but grew slowly and was softer and less mineralized than the wild-type. DsppP19L incisor enamel was softer than normal, while molar enamel showed reduced rod/interrod definition. Dspp-1fs dentin formation was analogous to reparative dentin: it lacked dentinal tubules, contained cellular debris, and was significantly softer and thinner than Dspp+/+ and DsppP19L dentin. The Dspp-1fs incisor enamel appeared normal and was comparable to the wild-type in hardness. We conclude that 5' and 3' Dspp mutations cause dental malformations through different pathological mechanisms and can be regarded as distinct disorders.
Zwaans BMM, Wegner KA, Bartolone SN, Vezina CM, Chancellor MB, Lamb LE
PMID: 32109348 | DOI: 10.14814/phy2.14377
A subset of patients receiving radiation therapy for pelvic cancer develop radiation cystitis, a complication characterized by mucosal cell death, inflammation, hematuria, and bladder fibrosis. Radiation cystitis can reduce bladder capacity, cause incontinence, and impair voiding function so severely that patients require surgical intervention. Factors influencing onset and severity of radiation cystitis are not fully known. We tested the hypothesis that genetic background is a contributing factor. We irradiated bladders of female C57BL/6, C3H, and BALB/c mice and evaluated urinary voiding function, bladder shape, histology, collagen composition, and distribution of collagen-producing cells. We found that the genetic background profoundly affects the severity of radiation-induced bladder fibrosis and urinary voiding dysfunction. C57BL/6 mice are most susceptible and C3H mice are most resistant. Irradiated C57BL/6 mouse bladders are misshapen and express more abundant collagen I and III proteins than irradiated C3H and BALB/c bladders. We localized Col1a1 and Col3a1 mRNAs to FSP1-negative stromal cells in the bladder lamina propria and detrusor. The number of collagen I and collagen III-producing cells can predict the average voided volume of a mouse. Collectively, we show that genetic factors confer sensitivity to radiation cystitis, establish C57BL/6 mice as a sensitive preclinical model, and identify a potential role for FSP1-negative stromal cells in radiation-induced bladder fibrosis
Pereira B, Amaral AL, Dias A, Mendes N, Muncan V, Silva AR, Thibert C, Radu AG, David L, M�ximo V, van den Brink GR, Billaud M, Almeida R
PMID: 32052574 | DOI: 10.15252/embr.201948938
Intestinal stem cells (ISCs) fuel the lifelong self-renewal of the intestinal tract and are paramount for epithelial repair. In this context, the Wnt pathway component LGR5 is the most consensual ISC marker to date. Still, the effort to better understand ISC identity and regulation remains a challenge. We have generated a Mex3a knockout mouse model and show that this RNA-binding protein is crucial for the maintenance of the Lgr5+ ISC pool, as its absence disrupts epithelial turnover during postnatal development and stereotypical organoid maturation ex vivo. Transcriptomic profiling of intestinal crypts reveals that Mex3a deletion induces the peroxisome proliferator-activated receptor (PPAR) pathway, along with a decrease in Wnt signalling and loss of the Lgr5+ stem cell signature. Furthermore, we identify PPAR? activity as a molecular intermediate of MEX3A-mediated regulation. We also show that high PPAR? signalling impairs Lgr5+ ISC function, thus uncovering a new layer of post-transcriptional regulation that critically contributes to intestinal homeostasis
Goad J, Ko YA, Kumar M, Syed SM, Tanwar PS.
PMID: 28153546 | DOI: 10.1016/j.ydbio.2017.01.015
In mice, implantation always occurs towards the antimesometrial side of the uterus, while the placenta develops at the mesometrial side. What determines this particular orientation of the implanting blastocyst remains unclear. Uterine glands are critical for implantation and pregnancy. In this study, we showed that uterine gland development and active Wnt signalling activity is limited to the antimesometrial side of the uterus. Dkk2, a known antagonist of Wnt signalling, is only present at the mesometrial side of the uterus. Imaging of whole uterus, thick uterine sections (100-1000μm), and individual glands revealed that uterine glands are simple tubes with branches that are directly connected to the luminal epithelium and are only present towards the antimesometrial side of the uterus. By developing a unique mouse model targeting the uterine epithelium, we demonstrated that Wnt/β-catenin signaling is essential for prepubertal gland formation and normal implantation, but dispensable for postpartum gland development and regeneration. Our results for the first time have provided a probable explanation for the antimesometrial bias for implantation.
Gupta K, Levinsohn J, Linderman G, Chen D, Sun TY, Dong D, Taketo MM, Bosenberg M, Kluger Y, Choate K, Myung P.
PMID: 30595533 | DOI: 10.1016/j.devcel.2018.11.032
Delineating molecular and cellular events that precede appendage morphogenesis has been challenging due to the inability to distinguish quantitative molecular differences between cells that lack histological distinction. The hair follicle (HF) dermal condensate (DC) is a cluster of cells critical for HF development and regeneration. Events that presage emergence of this distinctive population are poorly understood. Using unbiased single-cell RNA sequencing and in vivo methods, we infer a sequence of transcriptional states through which DC cells pass that begins prior to HF morphogenesis. Our data indicate that Wnt/β-catenin signaling is required to progress into an intermediate stage that precedes quiescence and differentiation. Further, we provide evidence that quiescent DC cells are recent progeny of selectively proliferating cells present prior to morphogenesis and that are later identified in the peri-DC zone during DC expansion. Together, these findings provide an inferred path of molecular states that lead to DC cell differentiation.
bioRxiv : the preprint server for biology
Bao, L;Fu, L;Su, Y;Chen, Z;Peng, Z;Sun, L;Gonzalez, FJ;Wu, C;Zhang, H;Shi, B;Shi, YB;
PMID: 36789439 | DOI: 10.1101/2023.01.24.524966
The intestine is critical for not only processing and resorbing nutrients but also protecting the organism from the environment. These functions are mainly carried out by the epithelium, which is constantly being self-renewed. Many genes and pathways can influence intestinal epithelial cell proliferation. Among them is mTORC1, whose activation increases cell proliferation. Here, we report the first intestinal epithelial cell-specific knockout ( ΔIEC ) of an amino acid transporter capable of activating mTORC1. We show that the transporter, SLC7A5, is highly expressed in mouse intestinal crypt and Slc7a5 ΔIEC reduces mTORC1 signaling. Surprisingly, Slc7a5 ΔIEC mice have increased cell proliferation but reduced secretory cells, particularly mature Paneth cells. scRNA-seq and electron microscopic analyses revealed dedifferentiation of Paneth cells in Slc7a5 ΔIEC mice, leading to markedly reduced secretory granules with little effect on Paneth cell number. We further show that Slc7a5 ΔIEC mice are prone to experimental colitis. Thus, SLC7A5 regulates secretory cell differentiation to affect stem cell niche and/or inflammatory response to regulate cell proliferation.
Nature biomedical engineering
You, Y;Tian, Y;Yang, Z;Shi, J;Kwak, KJ;Tong, Y;Estania, AP;Cao, J;Hsu, WH;Liu, Y;Chiang, CL;Schrank, BR;Huntoon, K;Lee, D;Li, Z;Zhao, Y;Zhang, H;Gallup, TD;Ha, J;Dong, S;Li, X;Wang, Y;Lu, WJ;Bahrani, E;Lee, LJ;Teng, L;Jiang, W;Lan, F;Kim, BYS;Lee, AS;
PMID: 36635419 | DOI: 10.1038/s41551-022-00989-w
The success of messenger RNA therapeutics largely depends on the availability of delivery systems that enable the safe, effective and stable translation of genetic material into functional proteins. Here we show that extracellular vesicles (EVs) produced via cellular nanoporation from human dermal fibroblasts, and encapsulating mRNA encoding for extracellular-matrix α1 type-I collagen (COL1A1) induced the formation of collagen-protein grafts and reduced wrinkle formation in the collagen-depleted dermal tissue of mice with photoaged skin. We also show that the intradermal delivery of the mRNA-loaded EVs via a microneedle array led to the prolonged and more uniform synthesis and replacement of collagen in the dermis of the animals. The intradermal delivery of EV-based COL1A1 mRNA may make for an effective protein-replacement therapy for the treatment of photoaged skin.
Foster BL, Ao M, Salmon CR, Chavez MB, Kolli TN, Tran AB, Chu EY, Kantovitz KR, Yadav M, Narisawa S, Millán JL, Nociti Jr FH, Somerman MJ.
PMID: - | DOI: 10.1016/j.bone.2017.12.004
The periodontal complex is essential for tooth attachment and function and includes the mineralized tissues, cementum and alveolar bone, separated by the unmineralized periodontal ligament (PDL). To gain insights into factors regulating cementum-PDL and bone-PDL borders and protecting against ectopic calcification within the PDL, we employed a proteomic approach to analyze PDL tissue from progressive ankylosis knock-out (Ank−/−) mice, featuring reduced PPi, rapid cementogenesis, and excessive acellular cementum. Using this approach, we identified the matrix protein osteopontin (Spp1/OPN) as an elevated factor of interest in Ank−/− mouse molar PDL. We studied the role of OPN in dental and periodontal development and function. During tooth development in wild-type (WT) mice, Spp1 mRNA was transiently expressed by cementoblasts and strongly by alveolar bone osteoblasts. Developmental analysis from 14 to 240 days postnatal (dpn) indicated normal histological structures in Spp1−/− comparable to WT control mice. Microcomputed tomography (micro-CT) analysis at 30 and 90 dpn revealed significantly increased volumes and tissue mineral densities of Spp1−/− mouse dentin and alveolar bone, while pulp and PDL volumes were decreased and tissue densities were increased. However, acellular cementum growth was unaltered in Spp1−/− mice. Quantitative PCR of periodontal-derived mRNA failed to identify potential local compensators influencing cementum in Spp1−/− vs. WT mice at 26 dpn. We genetically deleted Spp1 on the Ank−/− mouse background to determine whether increased Spp1/OPN was regulating periodontal tissues when the PDL space is challenged by hypercementosis in Ank−/− mice. Ank−/−; Spp1−/−double deficient mice did not exhibit greater hypercementosis than that in Ank−/− mice. Based on these data, we conclude that OPN has a non-redundant role regulating formation and mineralization of dentin and bone, influences tissue properties of PDL and pulp, but does not control acellular cementum apposition. These findings may inform therapies targeted at controlling soft tissue calcification.
Christiansen, P;Andreasen, C;Laursen, K;Delaisse, J;Andersen, T;
| DOI: 10.2139/ssrn.4224428
Background: Recruitment and proliferation of osteoprogenitors during the reversal-resorption phase, and their differentiation into mature bone-forming osteoblasts is crucial for initiation of bone formation during bone remodeling. This study investigates the osteoprogenitors’ gradual recruitment, proliferation, and differentiation into bone-forming osteoblasts within intracortical remodeling events of healthy adolescent humans. Methods: The study was conducted on cortical bone specimens from 11 healthy adolescent humans. The osteoprogenitor recruitment route and differentiation into osteoblasts were backtracked using immunostainings and in situ hybridizations with osteoblastic markers (CD271, osterix, collage type 1 and 3). The osteoblastic cell populations were defined based on the pore surfaces and their proliferation index (Ki67), density, and number/circumference were estimated in multiplex-immunofluorescence (Ki67, TRAcP, CD34, SMA) stained sections. Results: During the reversal-resorption phase, osteoclasts are intermixed with osteoblastic reversal cells (COL3A1 high CD271 high COL1A1 low Osterix neg ), which are considered to be spatiotemporal osteoprogenitors of bone-forming osteoblasts. Initiation of bone formation requires a critical density of these osteoblastic reversal cells (43±9 cells/mm), which is reached though proliferation (4.4±0.5% proliferative) and even more so through recruitment of osteoprogenitors, but challenged by the ongoing expansion of the canal circumference. These osteoprogenitors most likely originate from osteoblastic bone lining cells and mainly osteoblastic lumen cells, which expand their population though proliferation (4.6±0.3%) and vascular recruitment. These lumen cells resemble canopy cells above trabecular remodeling sites, and like canopy cells they extend above bone-forming osteoblasts where they may rejuvenate the osteoblast population during bone formation. Conclusion: Initiation of bone formation during intracortical remodeling requires a critical density osteoblastic reversal cells, which is reached though proliferation and recruitment of local osteoprogenitors: bone lining cells and osteoblastic lumen cells.