ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Veterinary Immunology and Immunopathology
2018 May 19
Albarrak SM, Waters WR, Stabel JR, Hostetter JM.
PMID: - | DOI: 10.1016/j.vetimm.2018.05.003
In the present study, we evaluated expression of IFN-γ, IL-17, TNF-α, IL-10 and TGF-β by mucosal cells, including WC1+ γδ T cells, in ileal tissues taken from non-infected cattle and cattle naturally infected with Mycobacterium avium subsp paratuberculosis (MAP). Infected cattle were either in the subclinical or clinical stage of infection. We hypothesized that the cytokine profile of the WC1+ γδ T cell subset would be different between subclinical and clinical cattle. Our data indicate a significant increase in the numbers of WC1+ γδ T cells expressing IL-10 in clinical cattle compared to subclinical and non-infected cattle. We observed a significant increase in TGF-β expression by non-WC1+ cells in clinically infected cattle. Expression of IFN-γ, IL-17 and TNF-α in mucosal cells, including the WC1+ γδ T cell subset, was identified in all examined groups. However, our data indicate that the stage of infection did not significantly influence expression of these proinflammatory cytokines. This study demonstrates changes in the cytokine mRNA expression profile of mucosal cells in the ileum, and specifically WC1+ γδ T cells, as cattle progress to the clinical disease. The change is characterized by an increase in expression of anti-inflammatory cytokines.
J Am Heart Assoc.
2016 Mar 15
Mizutani M, Wu JC, Nusse R.
PMID: - | DOI: 10.1161/JAHA.115.002457
Background The adult mammalian heart responds to cardiac injury by formation of persistent fibrotic scar that eventually leads to heart failure. In contrast, the neonatal mammalian heart reacts to injury by the development of transient fibrotic tissue that is eventually replaced by regenerated cardiomyocytes. How fibrosis occurs in the neonatal mammalian heart remains unknown. To start elucidating the molecular underpinnings of neonatal cardiac fibrosis, we investigated Wnt signaling in the neonatal heart after cryoinjury.
Methods and Results Using expression of the Wnt target gene Axin2 as an indicator of Wnt/β‐catenin signaling activation, we discovered that epicardial cells in the ventricles are responsive to Wnt in the uninjured neonatal heart. Lineage‐tracing studies of these Wnt‐responsive epicardial cells showed that they undergo epithelial‐to‐mesenchymal transition and infiltrate into the subepicardial space and exhibit fibroblast phenotypes after injury. In addition, we showed that—similar to adult ischemic injury—neonatal cryoinjury results in activation of Wnt signaling in cardiac fibroblasts near injured areas. Furthermore, through in situ hybridization of all 19 Wnt ligands in injured neonatal hearts, we observed upregulation of Wnt ligands (Wnt2b, Wnt5a, and Wnt9a) that had not been implicated in the adult cardiac injury response.
Conclusions These results demonstrate that cryoinjury in neonatal heart leads to the formation of fibrotic tissue that involves Wnt‐responsive epicardial cells undergoing epithelial‐to‐mesenchymal transition to give rise to fibroblasts and activation of Wnt signaling in resident cardiac fibroblasts.
Pathogens (Basel, Switzerland)
2023 Jun 19
Caspe, SG;Ewing, DA;Livingstone, M;Underwood, C;Milne, E;Sargison, ND;Wattegedera, SR;Longbottom, D;
PMID: 37375536 | DOI: 10.3390/pathogens12060846
Development (Cambridge, England)
2021 May 01
Habara, O;Logan, CY;Kanai-Azuma, M;Nusse, R;Takase, HM;
PMID: 33914868 | DOI: 10.1242/dev.198846
Mediators of Inflammation
2015 Nov 15
Christensen AB, Dige A, Vad-Nielsen J, Brinkmann CR, Bendix M, Østergaard L, Tolstrup M, Søgaard OS, Rasmussen TA, Nyengaard JR, Agnholt J, Denton PW.
PMID: - | DOI: http://dx.doi.org/10.1155/2015/120605
Intestinal CD4+ T cell depletion is rapid and profound during early HIV-1 infection. This leads to a compromised mucosal barrier that prompts chronic systemic inflammation. The preferential loss of intestinal T helper 17 (Th17) cells in HIV-1 disease is a driver of the damage within the mucosal barrier and of disease progression. Thus, understanding the effects of new therapeutic strategies in the intestines has high priority. Histone deacetylase (HDAC) inhibitors (e.g., panobinostat) are actively under investigation as potential latency reversing agents in HIV eradication studies. These drugs have broad effects that go beyond reactivating virus, including modulation of immune pathways. We examined colonic biopsies from ART suppressed HIV-1 infected individuals (clinicaltrials.gov: NCT01680094) for the effects of panobinostat on intestinal T cell activation and on inflammatory cytokine production. We compared biopsy samples that were collected before and during oral panobinostat treatment and observed that panobinostat had a clear biological impact in this anatomical compartment. Specifically, we observed a decrease in CD69+ intestinal lamina propria T cell frequency and increased IL-17A mRNA expression in the intestinal epithelium. These results suggest that panobinostat therapy may influence the restoration of mucosal barrier function in these patients.
J Clin Invest.
2017 Feb 06
Ramjee V, Li D, Manderfield LJ, Liu F, Engleka KA, Aghajanian H, Rodell CB, Lu W, Ho V, Wang T, Li L, Singh A, Cibi DM, Burdick JA, Singh MK, Jain R, Epstein JA.
PMID: 28165342 | DOI: 10.1172/JCI88759
Ischemic heart disease resulting from myocardial infarction (MI) is the most prevalent form of heart disease in the United States. Post-MI cardiac remodeling is a multifaceted process that includes activation of fibroblasts and a complex immune response. T-regulatory cells (Tregs), a subset of CD4+ T cells, have been shown to suppress the innate and adaptive immune response and limit deleterious remodeling following myocardial injury. However, the mechanisms by which injured myocardium recruits suppressive immune cells remain largely unknown. Here, we have shown a role for Hippo signaling in the epicardium in suppressing the post-infarct inflammatory response through recruitment of Tregs. Mice deficient in epicardial YAP and TAZ, two core Hippo pathway effectors, developed profound post-MI pericardial inflammation and myocardial fibrosis, resulting in cardiomyopathy and death. Mutant mice exhibited fewer suppressive Tregs in the injured myocardium and decreased expression of the gene encoding IFN-γ, a known Treg inducer. Furthermore, controlled local delivery of IFN-γ following MI rescued Treg infiltration into the injured myocardium of YAP/TAZ mutants and decreased fibrosis. Collectively, these results suggest that epicardial Hippo signaling plays a key role in adaptive immune regulation during the post-MI recovery phase.
SSRN Electronic Journal
2022 May 28
Galera, P;Alejo, J;Valadez, R;Davies-Hill, T;Menon, M;Hasni, S;Jaffe, E;Pittaluga, S;
| DOI: 10.2139/ssrn.4115599
Journal of Diabetes Research
2016 Jan 10
Cucak H, Hansen G, Vrang N, Skarsfeldt T, Steiness E, Jelsing J.
PMID: - | DOI: 10.1155/2016/7484601
The cytokine interleukin-1β (IL-1β) is known to stimulate proinflammatory immune responses and impair β-cell function and viability, all critical events in the pathogenesis of type 1 diabetes (T1D). Here we evaluate the effect of SER140, a small peptide IL-1β receptor antagonist, on diabetes progression and cellular pancreatic changes in female nonobese diabetic (NOD) mice. Eight weeks of treatment with SER140 reduced the incidence of diabetes by more than 50% compared with vehicle, decreased blood glucose, and increased plasma insulin. Additionally, SER140 changed the endocrine and immune cells dynamics in the NOD mouse pancreas. Together, the data suggest that SER140 treatment postpones the onset of diabetes in female NOD mice by interfering with IL-1β activated pathways.
Nature methods
2021 Jul 12
Andrews, N;Serviss, JT;Geyer, N;Andersson, AB;Dzwonkowska, E;Šutevski, I;Heijboer, R;Baryawno, N;Gerling, M;Enge, M;
PMID: 34253926 | DOI: 10.1038/s41592-021-01196-2
Oncoimmunology
2023 Apr 04
Reschke, R;Gajewski, TF;
PMID: 37035636 | DOI: 10.1080/2162402X.2023.2197358
Proc Natl Acad Sci U S A.
2018 Jun 11
Xing L, Anbarchian T, Tsai JM, Plant GW, Nusse R.
PMID: 29891676 | DOI: 10.1073/pnas.1803297115
In the adult mouse spinal cord, the ependymal cell population that surrounds the central canal is thought to be a promising source of quiescent stem cells to treat spinal cord injury. Relatively little is known about the cellular origin of ependymal cells during spinal cord development, or the molecular mechanisms that regulate ependymal cells during adult homeostasis. Using genetic lineage tracing based on the Wnt target gene Axin2, we have characterized Wnt-responsive cells during spinal cord development. Our results revealed that Wnt-responsive progenitor cells are restricted to the dorsal midline throughout spinal cord development, which gives rise to dorsal ependymal cells in a spatially restricted pattern. This is contrary to previous reports that suggested an exclusively ventral origin of ependymal cells, suggesting that ependymal cells may retain positional identities in relation to their neural progenitors. Our results further demonstrated that in the postnatal and adult spinal cord, all ependymal cells express the Wnt/β-catenin signaling target gene Axin2, as well as Wnt ligands. Genetic elimination of β-catenin or inhibition of Wnt secretion in Axin2-expressing ependymal cells in vivo both resulted in impaired proliferation, indicating that Wnt/β-catenin signaling promotes ependymal cell proliferation. These results demonstrate the continued importance of Wnt/β-catenin signaling for both ependymal cell formation and regulation. By uncovering the molecular signals underlying the formation and regulation of spinal cord ependymal cells, our findings thus enable further targeting and manipulation of this promising source of quiescent stem cells for therapeutic interventions.
Data in Brief
2017 Apr 08
Goad J, Ko YA, Syed SM, Crossingham YJ, Tanwar PS.
PMID: - | DOI: 10.1016/j.dib.2017.03.047
Wnt signaling plays an important role in uterine organogenesis and oncogenesis. Our mRNA expression data documents the expression of various Wnt pathway members during the key stages of uterine epithelial gland development. Our data illustrates the expression of Wnt signaling inhibitors (Axin2, Sfrp2, Sfrp4, Dkk1 and Dkk3) in mice uteri at postnatal day 6 (PND 6) and day 15 (PND 15). They also describe the expression pattern of the Wnt ligands (Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt5b, Wnt7b, Wnt8a, Wnt8b, Wnt9a, Wnt9b, Wnt10a and Wnt10b) in mice uteri with or without progesterone treatment. Detailed interpretation and discussion of these data is presented in the research article entitled “Differential Wnt signaling activity limits epithelial gland development to the anti-mesometrial side of the mouse uterus” [1].
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com