ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Nature communications
2023 Mar 31
Flanigan, ME;Hon, OJ;D'Ambrosio, S;Boyt, KM;Hassanein, L;Castle, M;Haun, HL;Pina, MM;Kash, TL;
PMID: 37002196 | DOI: 10.1038/s41467-023-36808-2
Cell
2022 Nov 23
Chirila, AM;Rankin, G;Tseng, SY;Emanuel, AJ;Chavez-Martinez, CL;Zhang, D;Harvey, CD;Ginty, DD;
PMID: 36334588 | DOI: 10.1016/j.cell.2022.10.012
Neuron
2022 Sep 23
Yao, Y;Barger, Z;Saffari Doost, M;Tso, CF;Darmohray, D;Silverman, D;Liu, D;Ma, C;Cetin, A;Yao, S;Zeng, H;Dan, Y;
PMID: 36170850 | DOI: 10.1016/j.neuron.2022.08.027
Nature communications
2021 May 13
Hunt, C;Hartford, SA;White, D;Pefanis, E;Hanna, T;Herman, C;Wiley, J;Brown, H;Su, Q;Xin, Y;Voronin, D;Nguyen, H;Altarejos, J;Crosby, K;Haines, J;Cancelarich, S;Drummond, M;Moller-Tank, S;Malpass, R;Buckley, J;Del Pilar Molina-Portela, M;Droguett, G;Frendewey, D;Chiao, E;Zambrowicz, B;Gong, G;
PMID: 33986266 | DOI: 10.1038/s41467-021-22932-4
Diabetes
2019 Apr 01
Ratner C, He Z, Grunddal KV, Skov LJ, Hartmann B, Zhang F, Feuchtinger A, Bjerregaard A, Christoffersen C, Tschöp MH, Finan B, DiMarchi RD, Leinninger GM, Williams KW, Clemmensen C, Holst B.
PMID: 30936142 | DOI: 10.2337/db18-1009
Neurotensin, a gut hormone and neuropeptide, increases in circulation after bariatric surgery in rodents and humans and inhibits food intake in mice. However, its potential to treat obesity and the subsequent metabolic dysfunctions have been difficult to assess owing to its short half-life in vivo Here, we demonstrate that a long acting, pegylated analogue of the neurotensin peptide (P-NT) reduces food intake, body weight and adiposity in diet-induced obese (DIO) mice when administered once daily for 6 days. Strikingly, when P-NT was combined with the GLP-1 mimetic liraglutide the two peptides synergized to reduce food intake and body weight relative to each mono-therapy, without inducing a taste aversion. Further, P-NT and liraglutide co-administration improved glycemia and reduced steatohepatitis. Finally, we show that the melanocortin pathway is central for P-NT-induced anorexia and necessary for the full synergistic effect of P-NT and liraglutide combination-therapy. Overall, our data suggest that P-NT and liraglutide combination-therapy could be an enhanced treatment for obesity with improved tolerability compared to liraglutide mono-therapy.
Neuron
2017 Jun 29
Xiao L, Priest MF, Nasenbeny J, Lu T, Kozorovitskiy Y.
PMID: 28669546 | DOI: 10.1016/j.neuron.2017.06.003
The release of dopamine (DA) regulates rewarding behavior and motor actions through striatum-targeting efferents from ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). Here, we map and functionally characterize axonal projections from oxytocin neurons in the hypothalamic paraventricular nucleus to midbrain DA regions. Electrophysiological recordings of DA neurons reveal that both the application of oxytocin and optogenetic stimulation of oxytocinergic terminals suffice to increase DA neuron activity in the VTA but downregulate it in SNc. This biased modulation is mediated by oxytocin and vasopressin G-protein-coupled receptors. Oxytocin release directly activates DA neurons and indirectly inhibits them through local GABA neurons, but the relative magnitudes of the two mechanisms differ in VTA and SNc. Oxytocin-modulated DA neurons give rise to canonical striatal projections. Since hypothalamic oxytocinergic projections also target the striatum, oxytocin is poised to bias the balance of DA tone through multiple sites in vertebrate reward circuits.
Nat Neurosci.
2018 Aug 13
Keller JA, Chen J, Simpson S, Wang EHJ, Lilascharoen V, George O, Lim BK, Stowers L.
PMID: 30104734 | DOI: 10.1038/s41593-018-0204-3
Voluntary urination ensures that waste is eliminated when safe and socially appropriate, even without a pressing urge. Uncontrolled urination, or incontinence, is a common problem with few treatment options. Normal urine release requires a small region in the brainstem known as Barrington's nucleus (Bar), but specific neurons that relax the urethral sphincter and enable urine flow are unknown. Here we identify a small subset of Bar neurons that control the urethral sphincter in mice. These excitatory neurons express estrogen receptor 1 (BarESR1), project to sphincter-relaxing interneurons in the spinal cord and are active during natural urination. Optogenetic stimulation of BarESR1 neurons rapidly initiates sphincter bursting and efficient voiding in anesthetized and behaving animals. Conversely, optogenetic and chemogenetic inhibition reveals their necessity in motivated urination behavior. The identification of these cells provides an expanded model for the control of urination and its dysfunction.
Nat Commun.
2018 Nov 09
Zhang L, Ip CK, Lee ICJ, Qi Y, Reed F, Karl T, Low JK, Enriquez RF, Lee NJ, Baldock PA, Herzog H.
PMID: 30413707 | DOI: 10.1038/s41467-018-06462-0
Excess caloric intake results in increased fat accumulation and an increase in energy expenditure via diet-induced adaptive thermogenesis; however, the underlying mechanisms controlling these processes are unclear. Here we identify the neuropeptide FF receptor-2 (NPFFR2) as a critical regulator of diet-induced thermogenesis and bone homoeostasis. Npffr2-/- mice exhibit a stronger bone phenotype and when fed a HFD display exacerbated obesity associated with a failure in activating brown adipose tissue (BAT) thermogenic response to energy excess, whereas the activation of cold-induced BAT thermogenesis is unaffected. NPFFR2 signalling is required to maintain basal arcuate nucleus NPY mRNA expression. Lack of NPFFR2 signalling leads to a decrease in BAT thermogenesis under HFD conditions with significantly lower UCP-1 and PGC-1α levels in the BAT. Together, these data demonstrate that NPFFR2 signalling promotes diet-induced thermogenesis via a novel hypothalamic NPY-dependent circuitry thereby coupling energy homoeostasis with energy partitioning to adipose and bone tissue.
Cell metabolism
2023 May 02
Chen, W;Mehlkop, O;Scharn, A;Nolte, H;Klemm, P;Henschke, S;Steuernagel, L;Sotelo-Hitschfeld, T;Kaya, E;Wunderlich, CM;Langer, T;Kononenko, NL;Giavalisco, P;Brüning, JC;
PMID: 37075752 | DOI: 10.1016/j.cmet.2023.03.019
Nature neuroscience
2022 Dec 12
Shin, S;You, IJ;Jeong, M;Bae, Y;Wang, XY;Cawley, ML;Han, A;Lim, BK;
PMID: 36510113 | DOI: 10.1038/s41593-022-01208-0
Cell metabolism
2022 Jun 07
Feng, C;Wang, Y;Zha, X;Cao, H;Huang, S;Cao, D;Zhang, K;Xie, T;Xu, X;Liang, Z;Zhang, Z;
PMID: 35675799 | DOI: 10.1016/j.cmet.2022.05.002
eLife
2021 May 20
Cleary, CM;Milla, BM;Kuo, FS;James, S;Flynn, WF;Robson, P;Mulkey, DK;
PMID: 34013884 | DOI: 10.7554/eLife.60317
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com