Protein arginine methyltransferase 1 regulates cell proliferation and differentiation in adult mouse adult intestine
Xue, L;Bao, L;Roediger, J;Su, Y;Shi, B;Shi, YB;
PMID: 34158114 | DOI: 10.1186/s13578-021-00627-z
Adult stem cells play an essential role in adult organ physiology and tissue repair and regeneration. While much has been learnt about the property and function of various adult stem cells, the mechanisms of their development remain poorly understood in mammals. Earlier studies suggest that the formation of adult mouse intestinal stem cells takes place during the first few weeks after birth, the postembryonic period when plasma thyroid hormone (T3) levels are high. Furthermore, deficiency in T3 signaling leads to defects in adult mouse intestine, including reduced cell proliferation in the intestinal crypts, where stem cells reside. Our earlier studies have shown that protein arginine methyltransferase 1 (PRMT1), a T3 receptor coactivator, is highly expressed during intestinal maturation in mouse.We have analyzed the expression of PRMT1 by immunohistochemistry and studied the effect of tissue-specific knockout of PRMT1 in the intestinal epithelium.We show that PRMT1 is expressed highly in the proliferating transit amplifying cells and crypt base stem cells. By using a conditional knockout mouse line, we have demonstrated that the expression of PRMT1 in the intestinal epithelium is critical for the development of the adult mouse intestine. Specific removal of PRMT1 in the intestinal epithelium results in, surprisingly, more elongated adult intestinal crypts with increased cell proliferation. In addition, epithelial cell migration along the crypt-villus axis and cell death on the villus are also increased. Furthermore, there are increased Goblet cells and reduced Paneth cells in the crypt while the number of crypt base stem cells remains unchanged.Our finding that PRMT1 knockout increases cell proliferation is surprising considering the role of PRMT1 in T3-signaling and the importance of T3 for intestinal development, and suggests that PRMT1 likely regulates pathways in addition to T3-signaling to affect intestinal development and/or homeostasis, thus affecting cell proliferating and epithelial turn over in the adult.
WNT16 is Robustly Increased by Oncostatin M in Mouse Calvarial Osteoblasts and Acts as a Negative Feedback Regulator of Osteoclast Formation Induced by Oncostatin M
Journal of inflammation research
Henning, P;Movérare-Skrtic, S;Westerlund, A;Chaves de Souza, PP;Floriano-Marcelino, T;Nilsson, KH;El Shahawy, M;Ohlsson, C;Lerner, UH;
PMID: 34566421 | DOI: 10.2147/JIR.S323435
Bone loss is often observed adjacent to inflammatory processes. The WNT signaling pathways have been implicated as novel regulators of both immune responses and bone metabolism. WNT16 is important for cortical bone mass by inhibiting osteoclast differentiation, and we have here investigated the regulation of WNT16 by several members of the pro-inflammatory gp130 cytokine family.The expression and regulation of Wnt16 in primary murine cells were studied by qPCR, scRNAseq and in situ hybridization. Signaling pathways were studied by siRNA silencing. The importance of oncostatin M (OSM)-induced WNT16 expression for osteoclastogenesis was studied in cells from Wnt16-deficient and wild-type mice.We found that IL-6/sIL-6R and OSM induce the expression of Wnt16 in primary mouse calvarial osteoblasts, with OSM being the most robust stimulator. The induction of Wnt16 by OSM was dependent on gp130 and OSM receptor (OSMR), and downstream signaling by the SHC1/STAT3 pathway, but independent of ERK. Stimulation of the calvarial cells with OSM resulted in enhanced numbers of mature, oversized osteoclasts when cells were isolated from Wnt16 deficient mice compared to cells from wild-type mice. OSM did not affect Wnt16 mRNA expression in bone marrow cell cultures, explained by the finding that Wnt16 and Osmr are expressed in distinctly different cells in bone marrow, nor was osteoclast differentiation different in OSM-stimulated bone marrow cell cultures isolated from Wnt16-/- or wild-type mice. Furthermore, we found that Wnt16 expression is substantially lower in cells from bone marrow compared to calvarial osteoblasts.These findings demonstrate that OSM is a robust stimulator of Wnt16 mRNA in calvarial osteoblasts and that WNT16 acts as a negative feedback regulator of OSM-induced osteoclast formation in the calvarial bone cells, but not in the bone marrow.
Sheahan, BJ;Theriot, CM;Cortes, JE;Dekaney, CM;
PMID: 35012435 | DOI: 10.1080/19490976.2021.2018898
Acute intestinal mucositis is a common off-target effect of chemotherapy, leading to co-morbidities such as vomiting, diarrhea, sepsis, and death. We previously demonstrated that the presence of enteric bacteria modulates the extent of jejunal epithelial damage induced by doxorubicin (DXR) in mice. Despite conventional thinking of the crypt as a sterile environment, recent evidence suggests that bacterial signaling influences aISC function. In this study, we labeled aISCs using transgenic Lgr5-driven fluorescence or with immunostaining for OLFM4. We examined the effect of DXR in both germ free (GF) mice and mice depleted of microbiota using an established antimicrobial treatment protocol (AMBx). We found differences in DXR-induced loss of aISCs between GF mice and mice treated with AMBx. aISCs were decreased after DXR in GF mice, whereas AMBx mice retained aISC expression after DXR. Neither group of mice exhibited an inflammatory response to DXR, suggesting the difference in aISC retention was not due to differences in local tissue inflammation. Therefore, we suspected that there was a protective microbial signal present in the AMBx mice that was not present in the GF mice. 16S rRNA sequencing of jejunal luminal contents demonstrated that AMBx altered the fecal and jejunal microbiota. In the jejunal contents, AMBx mice had increased abundance of Ureaplasma and Burkholderia. These results suggest pro-survival signaling from microbiota in AMBx-treated mice to the aISCs, and that this signaling maintains aISCs in the face of chemotherapeutic injury. Manipulation of the enteric microbiota presents a therapeutic target for reducing the severity of chemotherapy-associated mucositis.
WNT signaling in pre-granulosa cells is required for ovarian folliculogenesis and female fertility
Development (Cambridge, England)
Habara, O;Logan, CY;Kanai-Azuma, M;Nusse, R;Takase, HM;
PMID: 33914868 | DOI: 10.1242/dev.198846
In mammalian ovaries, immature oocytes are reserved in primordial follicles until their activation for potential ovulation. Precise control of primordial follicle activation (PFA) is essential for reproduction, but how this is achieved is unclear. Here, we show that canonical wingless-type MMTV integration site family (WNT) signaling is pivotal for pre-granulosa cell (pre-GC) activation during PFA. We identified several WNT ligands expressed in pre-GCs that act in an autocrine manner. Inhibition of WNT secretion from pre-GCs/GCs by conditional knockout (cKO) of the wntless (Wls) gene led to female infertility. In Wls cKO mice, GC layer thickness was greatly reduced in growing follicles, which resulted in impaired oocyte growth with both an abnormal, sustained nuclear localization of forkhead box O3 (FOXO3) and reduced phosphorylation of ribosomal protein S6 (RPS6). Constitutive stabilization of β-catenin (CTNNB1) in pre-GCs/GCs induced morphological changes of pre-GCs from a squamous into a cuboidal form, though it did not influence oocyte activation. Our results reveal that canonical WNT signaling plays a permissive role in the transition of pre-GCs to GCs, which is an essential step to support oocyte growth.
Cloft, S;Miska, K;Jenkins, M;Proszkowiec-Weglarz, M;Kahl, S;Wong, E;
| DOI: 10.1016/j.psj.2023.102537
Infection with the protozoan parasite Eimeria can cause the economically devastating disease coccidiosis, which is characterized by gross tissue damage and inflammation resulting in blunted villi and altered intestinal homeostasis. Male broiler chickens at 21 d of age were given a single challenge with Eimeria acervulina. Temporal changes in intestinal morphology and gene expression were investigated at 0, 3, 5, 7, 10, and 14 d post-infection (dpi). There were increased crypt depths for chickens infected with E. acervulina starting at 3 dpi and continuing to 14 dpi. At 5 and 7 dpi, infected chickens had decreased Mucin2 (Muc2), and Avian beta defensin (AvBD) 6 mRNA at 5 and 7 dpi and decreased AvBD10 mRNA at 7 dpi compared to uninfected chickens. Liver-enriched antimicrobial peptide 2 (LEAP2) mRNA was decreased at 3, 5, 7, and 14 dpi compared to uninfected chickens. After 7 dpi, there was increased Collagen 3a1 and Notch 1 mRNA compared to uninfected chickens. Marker of proliferation Ki67 mRNA was increased in infected chickens from 3 to 10 dpi. In addition, the presence of E. acervulina was visualized by in situ hybridization (ISH) with an E. acervulina sporozoite surface antigen (Ea-SAG) probe. In E. acervulina infected chickens, Ea-SAG mRNA was only detectable on 5 and 7 dpi by both ISH and qPCR. To further investigate the site of E. acervulina infection, Ea-SAG and Muc2 probes were examined on serial sections. The Muc2 ISH signal was decreased in regions where the Ea-SAG ISH signal was present, suggesting that the decrease in Muc2 by qPCR may be caused by the loss of Muc2 in the localized regions where the E. acervulina had invaded the tissue. Eimeria acervulina appears to manipulate host cells by decreasing their defensive capabilities and thereby allows the infection to propagate freely. Following infection, the intestinal cells upregulate genes that may support regeneration of damaged intestinal tissue.
Cell Host Microbe. 2018 Dec 12.
Lee YS, Kim TY, Kim Y, Lee SH, Kim S, Kang SW, Yang JY, Baek IJ, Sung YH, Park YY, Hwang SW, O E, Kim KS, Liu S, Kamada N, Gao N, Kweon MN.
PMID: 30543778 | DOI: 10.1016/j.chom.2018.11.002
Symbionts play an indispensable role in gut homeostasis, but underlying mechanisms remain elusive. To clarify the role of lactic-acid-producing bacteria (LAB) on intestinal stem-cell (ISC)-mediated epithelial development, we fed mice with LAB-type symbionts such as Bifidobacterium and Lactobacillus spp. Here we show that administration of LAB-type symbionts significantly increased expansion of ISCs, Paneth cells, and goblet cells. Lactate stimulated ISC proliferation through Wnt/β-catenin signals of Paneth cells and intestinal stromal cells. Moreover, Lactobacillus plantarum strains lacking lactate dehydrogenase activity, which are deficient in lactate production, elicited less ISC proliferation. Pre-treatment with LAB-type symbionts or lactate protected mice in response to gut injury provoked by combined treatments with radiation and a chemotherapy drug. Impaired ISC-mediated epithelial development was found in mice deficient of the lactate G-protein-coupled receptor, Gpr81. Our results demonstrate that LAB-type symbiont-derived lactate plays a pivotal role in promoting ISC-mediated epithelial development in a Gpr81-dependent manner.
Basham KJ, Rodriguez S, Turcu AF, Lerario AM, Logan CY, Rysztak MR, Gomez-Sanchez CE, Breault DT, Koo BK, Clevers H, Nusse R, Val P, Hammer GD.
PMID: 30692207 | DOI: 10.1101/gad.317412.118
Spatiotemporal control of Wnt signaling is essential for the development and homeostasis of many tissues. The transmembrane E3 ubiquitin ligases ZNRF3 (zinc and ring finger 3) and RNF43 (ring finger protein 43) antagonize Wnt signaling by promoting degradation of frizzled receptors. ZNRF3 and RNF43 are frequently inactivated in human cancer, but the molecular and therapeutic implications remain unclear. Here, we demonstrate that adrenocortical-specific loss of ZNRF3, but not RNF43, results in adrenal hyperplasia that depends on Porcupine-mediated Wnt ligand secretion. Furthermore, we discovered a Wnt/β-catenin signaling gradient in the adrenal cortex that is disrupted upon loss of ZNRF3. Unlike β-catenin gain-of-function models, which induce high Wnt/β-catenin activation and expansion of the peripheral cortex, ZNRF3 loss triggers activation of moderate-level Wnt/β-catenin signaling that drives proliferative expansion of only the histologically and functionally distinct inner cortex. Genetically reducing β-catenin dosage significantly reverses the ZNRF3-deficient phenotype. Thus, homeostatic maintenance of the adrenal cortex is dependent on varying levels of Wnt/β-catenin activation, which is regulated by ZNRF3.