Knowland D, Lilascharoen V, Pacia CP, Shin S, Wang EH, Lim BK.
PMID: 28689640 | DOI: 10.1016/j.cell.2017.06.015
Major depressive disorder (MDD) patients display a common but often variable set of symptoms making successful, sustained treatment difficult to achieve. Separate depressive symptoms may be encoded by differential changes in distinct circuits in the brain, yet how discrete circuits underlie behavioral subsets of depression and how they adapt in response to stress has not been addressed. We identify two discrete circuits of parvalbumin-positive (PV) neurons in the ventral pallidum (VP) projecting to either the lateral habenula or ventral tegmental area contributing to depression. We find that these populations undergo different electrophysiological adaptations in response to social defeat stress, which are normalized by antidepressant treatment. Furthermore, manipulation of each population mediates either social withdrawal or behavioral despair, but not both. We propose that distinct components of the VP PV circuit can subserve related, yet separate depressive-like phenotypes in mice, which could ultimately provide a platform for symptom-specific treatments of depression.
Wright, KN;Johnson, NL;Dossat, AM;Wilson, JT;Wesson, DW;
PMID: 35101702 | DOI: 10.1016/j.yhbeh.2022.105122
Brain-derived 17β-estradiol (E2) confers rapid effects on neural activity. The tubular striatum (TuS, also called the olfactory tubercle) is both capable of local E2 synthesis due to its abundant expression of aromatase and is a critical locus for odor-guided motivated behavior and odor hedonics. TuS neurons also contain mRNA for estrogen receptors α, β, and the G protein-coupled estrogen receptor. We demonstrate here that mRNA for estrogen receptors appears to be expressed upon TuS dopamine 1 receptor-expressing neurons, suggesting that E2 may play a neuromodulatory role in circuits which are important for motivated behavior. Therefore, we reasoned that E2 in the TuS may influence attraction to urinary odors which are highly attractive. Using whole-body plethysmography, we examined odor-evoked high-frequency sniffing as a measure of odor attaction. Bilateral infusion of the aromatase inhibitor letrozole into the TuS of gonadectomized female adult mice induced a resistance to habituation over successive trials in their investigatory sniffing for female mouse urinary odors, indicative of an enhanced attraction. All males displayed resistance to habituation for female urinary odors, indicative of enhanced attraction that is independent from E2 manipulation. Letrozole's effects were not due to group differences in basal respiration, nor changes in the ability to detect or discriminate between odors (both monomolecular odorants and urinary odors). Therefore, de novo E2 synthesis in the TuS impacts females' but not males' attraction to female urinary odors, suggesting a sex-specific influence of E2 in odor hedonics.
Morris, C;Watkins, D;Shah, N;Pennington, T;Hens, B;Qi, G;Doud, E;Mosley, A;Atwood, B;Baucum, A;
| DOI: 10.1016/j.biopsych.2022.12.008
Background Grooming dysfunction is a hallmark of the obsessive-compulsive spectrum disorder, trichotillomania. Numerous preclinical studies have utilized SAPAP3 deficient mice for understanding the neurobiology of repetitive grooming, suggesting excessive grooming is caused by increased metabotropic glutamate receptor 5 (mGluR5) activity in striatal direct- and indirect pathway medium spiny neurons (dMSNs and iMSNs, respectively). However, MSN subtype-specific signaling mechanisms that mediate mGluR5-dependent adaptations underlying excessive grooming are not fully understood. Here, we investigate the MSN subtype-specific roles of the striatal signaling hub protein, spinophilin, in mediating repetitive motor dysfunction associated with mGluR5 function. Methods Quantitative proteomics and immunoblotting were utilized to identify how spinophilin impacts mGluR5 phosphorylation and protein interaction changes. Plasticity and repetitive motor dysfunction associated with mGluR5 action was measured using our novel conditional spinophilin mouse model that had spinophilin knocked out from striatal dMSNs or/and iMSNs. Results Loss of spinophilin only in iMSNs decreased performance of a novel motor repertoire, but loss of spinophilin in either MSN subtype abrogated striatal plasticity associated with mGluR5 function and prevented excessive grooming caused by SAPAP3 knockout mice or treatment with the mGluR5-specific positive allosteric modulator (VU0360172) without impacting locomotion-relevant behavior. Biochemically, we determined the spinophilin-mGluR5 interaction correlates with grooming behavior and loss of spinophilin shifts mGluR5 interactions from lipid-raft associated proteins toward postsynaptic density (PSD) proteins implicated in psychiatric disorders. Conclusions These results identify spinophilin as a novel striatal signaling hub molecule in MSNs that cell subtype-specifically mediates behavioral, functional, and molecular adaptations associated with repetitive motor dysfunction in psychiatric disorders.
Golden SA, Jin M, Heins C, Venniro M, Michaelides M, Shaham Y.
PMID: PMID: 30655356 | DOI: DOI:10.1523/JNEUROSCI.2409-18.2019
We recently developed a mouse model of appetitive operant aggression and reported that adult male outbred CD-1 mice lever-press for the opportunity to attack subordinate male mice and relapse to aggression seeking during abstinence. Here we studied the role of nucleus accumbens (NAc) dopamine D1- and D2-receptor (Drd1 and Drd2) expressing neurons in aggression self-administration and aggression seeking. We trained CD-1 mice to self-administer intruders (9 d, 12 trials/d) and tested them for aggression self-administration and aggression seeking on abstinence day 1. We used immunohistochemistry and in situ hybridization to measure the neuronal activity marker Fos in the NAc, and cell-type specific colocalization of Fos with Drd1- and Drd2-expressing neurons. To test the causal role of Drd1- and Drd2-expressing neurons, we validated a transgenic hybrid breeding strategy crossing inbred Drd1-Cre and Drd2-Cre transgenic mice with outbred CD-1 mice and used cell-type specific Cre-DREADD (hM4Di) to inhibit NAc Drd1- and Drd2-expressing neuron activity. We found that that aggression self-administration and aggression seeking induced higher Fos expression in NAc shell than in core, that Fos colocalized with Drd1 and Drd2 in both subregions, and that chemogenetic inhibition of Drd1-, but not Drd2-, expressing neurons decreased aggression self-administration and aggression seeking. Results indicate a cell-type specific role of Drd1-expressing neurons that is critical for both aggression self-administration and aggression seeking. Our study also validates a simple breeding strategy between outbred CD-1 mice and inbred C57-based Cre lines that can be used to study cell-type and circuit mechanisms of aggression reward and relapse.SIGNIFICANCE STATEMENTAggression is often comorbid with neuropsychiatric diseases, including drug addiction. One form, appetitive aggression, exhibits symptomatology that mimics that of drug addiction and is hypothesized to be due to dysregulation of addiction-related reward circuits. However, our mechanistic understanding of the circuitry modulating appetitive operant aggression is limited. Here we use a novel mouse model of aggression self-administration and relapse, in combination with immunohistochemistry, in situ hybridization, and chemogenetic manipulations to examine how cell-types in the nucleus accumbens are recruited for, and control, operant aggression self-administration and aggression seeking on abstinence day 1. We found that one population, dopamine receptor 1-expressing neurons, act as a critical modulator of operant aggression reward and aggression seeking.
Goad J, Ko YA, Syed SM, Crossingham YJ, Tanwar PS.
PMID: - | DOI: 10.1016/j.dib.2017.03.047
Wnt signaling plays an important role in uterine organogenesis and oncogenesis. Our mRNA expression data documents the expression of various Wnt pathway members during the key stages of uterine epithelial gland development. Our data illustrates the expression of Wnt signaling inhibitors (Axin2, Sfrp2, Sfrp4, Dkk1 and Dkk3) in mice uteri at postnatal day 6 (PND 6) and day 15 (PND 15). They also describe the expression pattern of the Wnt ligands (Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt5b, Wnt7b, Wnt8a, Wnt8b, Wnt9a, Wnt9b, Wnt10a and Wnt10b) in mice uteri with or without progesterone treatment. Detailed interpretation and discussion of these data is presented in the research article entitled “Differential Wnt signaling activity limits epithelial gland development to the anti-mesometrial side of the mouse uterus” [1].
Cai, X;Liu, H;Feng, B;Yu, M;He, Y;Liu, H;Liang, C;Yang, Y;Tu, L;Zhang, N;Wang, L;Yin, N;Han, J;Yan, Z;Wang, C;Xu, P;Wu, Q;Tong, Q;He, Y;Xu, Y;
PMID: 35501380 | DOI: 10.1038/s41593-022-01062-0
Midbrain dopamine (DA) and serotonin (5-HT) neurons regulate motivated behaviors, including feeding, but less is known about how these circuits may interact. In this study, we found that DA neurons in the mouse ventral tegmental area bidirectionally regulate the activity of 5-HT neurons in the dorsal raphe nucleus (DRN), with weaker stimulation causing DRD2-dependent inhibition and overeating, while stronger stimulation causing DRD1-dependent activation and anorexia. Furthermore, in the activity-based anorexia (ABA) paradigm, which is a mouse model mimicking some clinical features of human anorexia nervosa (AN), we observed a DRD2 to DRD1 shift of DA neurotransmission on 5-HTDRN neurons, which causes constant activation of these neurons and contributes to AN-like behaviors. Finally, we found that systemic administration of a DRD1 antagonist can prevent anorexia and weight loss in ABA. Our results revealed regulation of feeding behavior by stimulation strength-dependent interactions between DA and 5-HT neurons, which may contribute to the pathophysiology of AN.
Ghosh A, Syed SM, Tanwar PS.
PMID: 28743800 | DOI: 10.1242/dev.149989
The epithelial lining of the Fallopian tube is vital for fertility, providing nutrition to gametes, and facilitating their transport. It is composed of two major cell types: secretory cells and ciliated cells. Interestingly, human ovarian cancer precursor lesions are primarily consisting of secretory cells. It is unclear why secretory cells are the dominant cell type in these lesions. Additionally, the underlying mechanisms governing Fallopian tube epithelial homoeostasis are currently unknown. In the present study, we showed that across the different developmental stages of mouse oviduct, secretory cells are the most frequently dividing cells of the oviductal epithelium. In vivo genetic cell lineage tracing showed that secretory cells not only self-renew, but also give rise to ciliated cells. Analysis of a Wnt reporter mouse model and different Wnt target genes showed that the Wnt signaling pathway is involved in oviductal epithelial homoeostasis. By developing two triple transgenic mouse models, we showed that Wnt/β-catenin signaling is essential for self-renewal as well as differentiation of secretory cells. In summary, our results provide mechanistic insight into oviductal epithelial homoeostasis.
Claypool, SM;Behdin, S;Applebey, SV;Orihuel, J;Ma, Z;Reiner, DJ;
PMID: 35768212 | DOI: 10.1523/ENEURO.0496-21.2022
The orbitofrontal cortex (OFC) and piriform cortex (Pir) play a role in fentanyl relapse after food choice-induced voluntary abstinence, a procedure mimicking abstinence because of availability of alternative nondrug rewards. We used in situ hybridization and pharmacology to determine the role of OFC and Pir cannabinoid and dopamine receptors in fentanyl relapse. We trained male and female rats to self-administer food pellets for 6 d (6 h/d) and intravenous fentanyl (2.5 µg/kg/infusion) for 12 d (6 h/d). We assessed fentanyl relapse after 12 discrete choice sessions between fentanyl and food (20 trials/d), in which rats voluntarily reduced fentanyl self-administration. We used RNAscope to determine whether fentanyl relapse is associated with activity (indicated by Fos) in OFC and Pir cells expressing Cnr1 [which encodes cannabinoid 1 (CB1) receptors] or Drd1 and Drd2 (which encode dopamine D1 and D2 receptors). We injected a CB1 receptor antagonist or agonist (0.3 or 1.0 µg AM251 or WIN55,212-2/hemisphere) into OFC or a dopamine D1 receptor antagonist (1.0 or 3.0 µg SCH39166/hemisphere) into Pir to determine the effect on fentanyl relapse. Fentanyl relapse was associated with OFC cells co-expressing Fos and Cnr1 and Pir cells co-expressing Fos and Drd1 However, injections of the CB1 receptor antagonist AM251 or agonist WIN55,212-2 into OFC or the dopamine D1 receptor antagonist SCH39166 into Pir had no effect on fentanyl relapse. Fentanyl relapse is associated with activation of Cnr1-expressing OFC cells and Drd1-expressing Pir cells, but pharmacological manipulations do not support causal roles of OFC CB1 receptors or Pir dopamine D1 receptors in fentanyl relapse.
bioRxiv : the preprint server for biology
Matsumura, K;Choi, IB;Asokan, M;Le, NN;Natividad, L;Dobbs, LK;
PMID: 36865224 | DOI: 10.1101/2023.02.23.529807
Drug predictive cues and contexts exert powerful control over behavior and can incite drug seeking and taking. This association and the behavioral output are encoded within striatal circuits, and regulation of these circuits by G-protein coupled receptors affects cocaine-related behaviors. Here, we investigated how opioid peptides and G-protein coupled opioid receptors expressed in striatal medium spiny neurons (MSNs) regulate conditioned cocaine seeking. Augmenting levels of the opioid peptide enkephalin in the striatum facilitates acquisition of cocaine conditioned place preference (CPP). In contrast, opioid receptor antagonists attenuate cocaine CPP and facilitate extinction of alcohol CPP. However, whether striatal enkephalin is necessary for acquisition of cocaine CPP and maintenance during extinction remains unknown. We generated mice with a targeted deletion of enkephalin from dopamine D2-receptor expressing MSNs (D2-PenkKO) and tested them for cocaine CPP. Low striatal enkephalin levels did not attenuate acquisition or expression of CPP; however, D2-PenkKOs showed faster extinction of cocaine CPP. Single administration of the non-selective opioid receptor antagonist naloxone prior to preference testing blocked expression of CPP selectively in females, but equally between genotypes. Repeated administration of naloxone during extinction did not facilitate extinction of cocaine CPP for either genotype, but rather prevented extinction in D2-PenkKO mice. We conclude that while striatal enkephalin is not necessary for acquisition of cocaine reward, it maintains the learned association between cocaine and its predictive cues during extinction learning. Further, sex and pre-existing low striatal enkephalin levels may be important considerations for use of naloxone in treating cocaine use disorder.
Gaziano, I;Corneliussen, S;Biglari, N;Neuhaus, R;Shen, L;Sotelo-Hitschfeld, T;Klemm, P;Steuernagel, L;De Solis, AJ;Chen, W;Wunderlich, FT;Kloppenburg, P;Brüning, JC;
PMID: 36345942 | DOI: 10.1172/jci.insight.162753
Dopamine acts on neurons in the arcuate nucleus (ARC) of the hypothalamus, which controls homeostatic feeding responses. Here we demonstrate a differential enrichment of dopamine receptor 1 (Drd1) expression in food intake-promoting agouti related peptide (AgRP)/neuropeptide Y (NPY) neurons and a large proportion of Drd2-expressing anorexigenic proopiomelanocortin (POMC) neurons. Owing to the nature of these receptors, this translates into a predominant activation of AgRP/NPY neurons upon dopamine stimulation and a larger proportion of dopamine-inhibited POMC neurons. Employing intersectional targeting of Drd2-expressing POMC neurons, we reveal that dopamine-mediated POMC neuron inhibition is Drd2 dependent and that POMCDrd2+ neurons exhibit differential expression of neuropeptide signaling mediators compared with the global POMC neuron population, which manifests in enhanced somatostatin responsiveness of POMCDrd2+ neurons. Selective chemogenetic activation of POMCDrd2+ neurons uncovered their ability to acutely suppress feeding and to preserve body temperature in fasted mice. Collectively, the present study provides the molecular and functional characterization of POMCDrd2+ neurons and aids our understanding of dopamine-dependent control of homeostatic energy-regulatory neurocircuits.
Zhang, Y;Roy, DS;Zhu, Y;Chen, Y;Aida, T;Hou, Y;Shen, C;Lea, NE;Schroeder, ME;Skaggs, KM;Sullivan, HA;Fischer, KB;Callaway, EM;Wickersham, IR;Dai, J;Li, XM;Lu, Z;Feng, G;
PMID: 35676479 | DOI: 10.1038/s41586-022-04806-x
Although bradykinesia, tremor and rigidity are the hallmark motor defects in patients with Parkinson's disease (PD), patients also experience motor learning impairments and non-motor symptoms such as depression1. The neural circuit basis for these different symptoms of PD are not well understood. Although current treatments are effective for locomotion deficits in PD2,3, therapeutic strategies targeting motor learning deficits and non-motor symptoms are lacking4-6. Here we found that distinct parafascicular (PF) thalamic subpopulations project to caudate putamen (CPu), subthalamic nucleus (STN) and nucleus accumbens (NAc). Whereas PF→CPu and PF→STN circuits are critical for locomotion and motor learning, respectively, inhibition of the PF→NAc circuit induced a depression-like state. Whereas chemogenetically manipulating CPu-projecting PF neurons led to a long-term restoration of locomotion, optogenetic long-term potentiation (LTP) at PF→STN synapses restored motor learning behaviour in an acute mouse model of PD. Furthermore, activation of NAc-projecting PF neurons rescued depression-like phenotypes. Further, we identified nicotinic acetylcholine receptors capable of modulating PF circuits to rescue different PD phenotypes. Thus, targeting PF thalamic circuits may be an effective strategy for treating motor and non-motor deficits in PD.
Proc Natl Acad Sci U S A.
Lim X, Tan SH, Yu KL, Lim SB, Nusse R.
PMID: 26903625 | DOI: -
How stem cells maintain their identity and potency as tissues change during growth is not well understood. In mammalian hair, it is unclear how hair follicle stem cells can enter an extended period of quiescence during the resting phase but retain stem cell potential and be subsequently activated for growth. Here, we use lineage tracing and gene expression mapping to show that the Wnt target gene Axin2 is constantly expressed throughout the hair cycle quiescent phase in outer bulge stem cells that produce their own Wnt signals. Ablating Wnt signaling in the bulge cells causes them to lose their stem cell potency to contribute to hair growth and undergo premature differentiation instead. Bulge cells express secreted Wnt inhibitors, including Dickkopf (Dkk) and secreted frizzled-related protein 1 (Sfrp1). However, the Dickkopf 3 (Dkk3) protein becomes localized to the Wnt-inactive inner bulge that contains differentiated cells. We find that Axin2 expression remains confined to the outer bulge, whereas Dkk3 continues to be localized to the inner bulge during the hair cycle growth phase. Our data suggest that autocrine Wnt signaling in the outer bulge maintains stem cell potency throughout hair cycle quiescence and growth, whereas paracrine Wnt inhibition of inner bulge cells reinforces differentiation.