Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (110)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • (-) Remove SLC32A1 filter SLC32A1 (74)
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • (-) Remove GFP filter GFP (26)
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Fluorescent Multiplex Assay (38) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (38) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (9) Apply RNAscope filter
  • RNAscope 2.5 HD Red assay (3) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent v2 (3) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.0 Assay (2) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Duplex (2) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 VS Assay (1) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Fluorescent Multiplex Reagent kit (1) Apply RNAscope Fluorescent Multiplex Reagent kit filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter

Research area

  • Neuroscience (86) Apply Neuroscience filter
  • Cancer (5) Apply Cancer filter
  • Behavior (4) Apply Behavior filter
  • Development (4) Apply Development filter
  • Metabolism (4) Apply Metabolism filter
  • Other (4) Apply Other filter
  • behavioral (3) Apply behavioral filter
  • Addiction (2) Apply Addiction filter
  • Anxiety (2) Apply Anxiety filter
  • CGT (2) Apply CGT filter
  • Developmental (2) Apply Developmental filter
  • Injury (2) Apply Injury filter
  • Nueroscience (2) Apply Nueroscience filter
  • Sleep (2) Apply Sleep filter
  • Stem cell (2) Apply Stem cell filter
  • Stem Cells (2) Apply Stem Cells filter
  • Alzheimer's Disease (1) Apply Alzheimer's Disease filter
  • Bone (1) Apply Bone filter
  • Cardiovascular Disease (1) Apply Cardiovascular Disease filter
  • Eating (1) Apply Eating filter
  • emotional valence (1) Apply emotional valence filter
  • Endocrinology (1) Apply Endocrinology filter
  • Eye (1) Apply Eye filter
  • Fear (1) Apply Fear filter
  • Feeding Behavior (1) Apply Feeding Behavior filter
  • Hypoxia (1) Apply Hypoxia filter
  • Infectious Disease (1) Apply Infectious Disease filter
  • Inflammation (1) Apply Inflammation filter
  • Innate Immunity (1) Apply Innate Immunity filter
  • Liver (1) Apply Liver filter
  • Neural Mapping (1) Apply Neural Mapping filter
  • Obesity (1) Apply Obesity filter
  • other: Aging (1) Apply other: Aging filter
  • Other: Metabolism (1) Apply Other: Metabolism filter
  • Other: Ophthalmology (1) Apply Other: Ophthalmology filter
  • Pain (1) Apply Pain filter
  • Paralysis (1) Apply Paralysis filter
  • Parkinson's Disease (1) Apply Parkinson's Disease filter
  • Progenitor Cells (1) Apply Progenitor Cells filter
  • PTSD (1) Apply PTSD filter
  • Regeneration (1) Apply Regeneration filter
  • Reward (1) Apply Reward filter
  • Sex Differences (1) Apply Sex Differences filter
  • Sighing (1) Apply Sighing filter
  • Signalling (1) Apply Signalling filter
  • Spinal Cord injury (1) Apply Spinal Cord injury filter
  • Stress (1) Apply Stress filter
  • Trauma (1) Apply Trauma filter

Category

  • Publications (110) Apply Publications filter
GAD2-expression defines a class of excitatory lateral habenula neurons in mice that project to the raphe and pontine tegmentum

eNeuro

2020 Apr 22

Quina LA1, Walker A1, Morton G1, Han V1, Turner EE2,3
PMID: 32332079 | DOI: 10.1523/ENEURO.0527-19.2020

The lateral habenula (LHb) sends complex projections to several areas of the mesopontine tegmentum, the raphe, and the hypothalamus. However, few markers have been available to distinguish subsets of LHb neurons that may serve these pathways. In order to address this complexity, we examined the mouse and rat LHb for neurons that express the GABA biosynthesis enzymes glutamate decarboxylase 1 and 2 (GAD1, GAD2), and the vesicular GABA transporter (VGAT). The mouse LHb contains a population of neurons that express GAD2, while the rat LHb contains discrete populations of neurons that express GAD1 and VGAT. However, we could not detect single neurons in either species that co-express a GABA synthetic enzyme and VGAT, suggesting that these LHb neurons do not use GABA for conventional synaptic transmission. Instead, all of the neuronal types expressing a GABAergic marker in both species showed co-expression of the glutamate transporter VGluT2. Anterograde tract-tracing of the projections of GAD2-expressing LHb neurons in Gad2Cre mice, combined with retrograde tracing from selected downstream nuclei, show that LHb-GAD2 neurons project selectively to the midline structures in the mesopontine tegmentum, including the median raphe and nucleus incertus, and only sparsely innervate the hypothalamus, rostromedial tegmental nucleus, and ventral tegmental area. Postsynaptic recording of LHb-GAD2 neuronal input to tegmental neurons confirms that glutamate, not GABA, is the fast neurotransmitter in this circuit. Thus GAD2 expression can serve as a marker for functional studies of excitatory neurons serving specific LHb output pathways in mice.SIGNFICANCE STATEMENT The lateral habenula provides a major link between subcortical forebrain areas and the dopamine (DA) and serotonin (5HT) systems of the midbrain and pons, and it has been implicated in reward mechanisms and the regulation of mood states. Few markers have been available for the specific cell types and complex output pathways of the lateral habenula. Here we examined the expression of genes mediating GABAergic and glutamatergic transmission in the mouse and rat LHb, where no neurons in either species expressed a full complement of GABAergic markers, and all expressed the glutamatergic marker VGluT2. Consistent with this, in mice the LHb GAD2 neurons are excitatory and appear to use only glutamate for fast synaptic transmission.
Expression of type one cannabinoid receptor in different subpopulation of kisspeptin neurons and kisspeptin afferents to GnRH neurons in female mice

Brain structure & function

2021 Jul 14

Wilheim, T;Nagy, K;Mohanraj, M;Ziarniak, K;Watanabe, M;Sliwowska, J;Kalló, I;
PMID: 34263407 | DOI: 10.1007/s00429-021-02339-z

The endocannabinoids have been shown to target the afferents of hypothalamic neurons via cannabinoid 1 receptor (CB1) and thereby to influence their excitability at various physiological and/or pathological processes. Kisspeptin (KP) neurons form afferents of multiple neuroendocrine cells and influence their activity via signaling through a variation of co-expressed classical neurotransmitters and neuropeptides. The differential potency of endocannabinoids to influence the release of classical transmitters or neuropeptides, and the ovarian cycle-dependent functioning of the endocannabinoid signaling in the gonadotropin-releasing hormone (GnRH) neurons initiated us to study whether (a) the different subpopulations of KP neurons express CB1 mRNAs, (b) the expression is influenced by estrogen, and (c) CB1-immunoreactivity is present in the KP afferents to GnRH neurons. The aim of the study was to investigate the site- and cell-specific expression of CB1 in female mice using multiple labeling in situ hybridization and immunofluorescent histochemical techniques. The results support that CB1 mRNAs are expressed by both the GABAergic and glutamatergic subpopulations of KP neurons, the receptor protein is detectable in two-thirds of the KP afferents to GnRH neurons, and the expression of CB1 mRNA shows an estrogen-dependency. The applied estrogen-treatment, known to induce proestrus, reduced the level of CB1 transcripts in the rostral periventricular area of the third ventricle and arcuate nucleus, and differently influenced its co-localization with vesicular GABA transporter or vesicular glutamate transporter-2 in KP neurons. This indicates a gonadal cycle-dependent role of endocannabinoid signaling in the neuronal circuits involving KP neurons.
Voltage-gated calcium channel subunit α2δ-1 in spinal dorsal horn neurons contributes to aberrant excitatory synaptic transmission and mechanical hypersensitivity after peripheral nerve injury

Frontiers in molecular neuroscience

2023 Mar 23

Koga, K;Kobayashi, K;Tsuda, M;Kubota, K;Kitano, Y;Furue, H;
PMID: 37033377 | DOI: 10.3389/fnmol.2023.1099925

Neuropathic pain, an intractable pain symptom that occurs after nerve damage, is caused by the aberrant excitability of spinal dorsal horn (SDH) neurons. Gabapentinoids, the most commonly used drugs for neuropathic pain, inhibit spinal calcium-mediated neurotransmitter release by binding to α2δ-1, a subunit of voltage-gated calcium channels, and alleviate neuropathic pain. However, the exact contribution of α2δ-1 expressed in SDH neurons to the altered synaptic transmission and mechanical hypersensitivity following nerve injury is not fully understood. In this study, we investigated which types of SDH neurons express α2δ-1 and how α2δ-1 in SDH neurons contributes to the mechanical hypersensitivity and altered spinal synaptic transmission after nerve injury. Using in situ hybridization technique, we found that Cacna2d1, mRNA coding α2δ-1, was mainly colocalized with Slc17a6, an excitatory neuronal marker, but not with Slc32a1, an inhibitory neuronal marker in the SDH. To investigate the role of α2δ-1 in SDH neurons, we used clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system and showed that SDH neuron-specific ablation of Cacna2d1 alleviated mechanical hypersensitivity following nerve injury. We further found that excitatory post-synaptic responses evoked by electrical stimulation applied to the SDH were significantly enhanced after nerve injury, and that these enhanced responses were significantly decreased by application of mirogabalin, a potent α2δ-1 inhibitor, and by SDH neuron-specific ablation of Cacna2d1. These results suggest that α2δ-1 expressed in SDH excitatory neurons facilitates spinal nociceptive synaptic transmission and contributes to the development of mechanical hypersensitivity after nerve injury.
Involvement of the ghrelin system in the maintenance and reinstatement of cocaine-motivated behaviors: a role of adrenergic action at peripheral β1 receptors

Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology

2021 Dec 18

You, ZB;Galaj, E;Alén, F;Wang, B;Bi, GH;Moore, AR;Buck, T;Crissman, M;Pari, S;Xi, ZX;Leggio, L;Wise, RA;Gardner, EL;
PMID: 34923576 | DOI: 10.1038/s41386-021-01249-2

Cocaine addiction is a significant medical and public concern. Despite decades of research effort, development of pharmacotherapy for cocaine use disorder remains largely unsuccessful. This may be partially due to insufficient understanding of the complex biological mechanisms involved in the pathophysiology of this disorder. In the present study, we show that: (1) elevation of ghrelin by cocaine plays a critical role in maintenance of cocaine self-administration and cocaine-seeking motivated by cocaine-conditioned stimuli; (2) acquisition of cocaine-taking behavior is associated with the acquisition of stimulatory effects of cocaine by cocaine-conditioned stimuli on ghrelin secretion, and with an upregulation of ghrelin receptor mRNA levels in the ventral tegmental area (VTA); (3) blockade of ghrelin signaling by pretreatment with JMV2959, a selective ghrelin receptor antagonist, dose-dependently inhibits reinstatement of cocaine-seeking triggered by either cocaine or yohimbine in behaviorally extinguished animals with a history of cocaine self-administration; (4) JMV2959 pretreatment also inhibits brain stimulation reward (BSR) and cocaine-potentiated BSR maintained by optogenetic stimulation of VTA dopamine neurons in DAT-Cre mice; (5) blockade of peripheral adrenergic β1 receptors by atenolol potently attenuates the elevation in circulating ghrelin induced by cocaine and inhibits cocaine self-administration and cocaine reinstatement triggered by cocaine. These findings demonstrate that the endogenous ghrelin system plays an important role in cocaine-related addictive behaviors and suggest that manipulating and targeting this system may be viable for mitigating cocaine use disorder.
Neurons innervating both the central amygdala and the ventral tegmental area encode different emotional valences

Frontiers in neuroscience

2023 May 05

Liu, A;Cheng, Y;Huang, J;
PMID: 37214399 | DOI: 10.3389/fnins.2023.1178693

Mammals are frequently exposed to various environmental stimuli, and to determine whether to approach or avoid these stimuli, the brain must assign emotional valence to them. Therefore, it is crucial to investigate the neural circuitry mechanisms involved in the mammalian brain's processing of emotional valence. Although the central amygdala (CeA) and the ventral tegmental area (VTA) individually encode different or even opposing emotional valences, it is unclear whether there are common upstream input neurons that innervate and control both these regions, and it is interesting to know what emotional valences of these common upstream neurons. In this study, we identify three major brain regions containing neurons that project to both the CeA and the VTA, including the posterior bed nucleus of the stria terminalis (pBNST), the pedunculopontine tegmental nucleus (PPTg), and the anterior part of the basomedial amygdala (BMA). We discover that these neural populations encode distinct emotional valences. Activating neurons in the pBNST produces positive valence, enabling mice to overcome their innate avoidance behavior. Conversely, activating neurons in the PPTg produces negative valence and induces anxiety-like behaviors in mice. Neuronal activity in the BMA, on the other hand, does not influence valence processing. Thus, our study has discovered three neural populations that project to both the CeA and the VTA and has revealed the distinct emotional valences these populations encode. These results provide new insights into the neurological mechanisms involved in emotional regulation.
WNT7B Regulates Cholangiocyte Proliferation and Function During Murine Cholestasis

Hepatology communications

2021 Aug 25

Kosar, K;Cornuet, P;Singh, S;Lee, E;Liu, S;Gayden, J;Sato, T;Freyberg, Z;Arteel, G;Nejak-Bowen, K;
PMID: 34558852 | DOI: 10.1002/hep4.1784

We previously identified an up-regulation of specific Wnt proteins in the cholangiocyte compartment during cholestatic liver injury and found that mice lacking Wnt secretion from hepatocytes and cholangiocytes showed fewer proliferating cholangiocytes and high mortality in response to a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet, a murine model of primary sclerosing cholangitis. In vitro studies demonstrated that Wnt7b, one of the Wnts up-regulated during cholestasis, induces proliferation of cholangiocytes in an autocrine manner and increases secretion of proinflammatory cytokines. We hypothesized that loss of Wnt7b may exacerbate some of the complications of cholangiopathies by decreasing the ability of bile ducts to induce repair. Wnt7b-flox mice were bred with Krt19-cre mice to deplete Wnt7b expression in only cholangiocytes (CC) or with albumin-Cre mice to delete Wnt7b expression in both hepatocytes and cholangiocytes (HC + CC). These mice were placed on a DDC diet for 1 month then killed for evaluation. Contrary to our expectations, we found that mice lacking Wnt7b from CC and HC + CC compartments had improved biliary injury, decreased cellular senescence, and lesser bile acid accumulation after DDC exposure compared to controls, along with decreased expression of inflammatory cytokines. Although Wnt7b knockout (KO) resulted in fewer proliferating cholangiocytes, CC and HC + CC KO mice on a DDC diet also had more hepatocytes expressing cholangiocyte markers compared to wild-type mice on a DDC diet, indicating that Wnt7b suppression promotes hepatocyte reprogramming. Conclusion: Wnt7b induces a proproliferative proinflammatory program in cholangiocytes, and its loss is compensated for by conversion of hepatocytes to a biliary phenotype during cholestatic injury.
Edinger-Westphal peptidergic neurons enable maternal preparatory nesting

Neuron

2022 Feb 01

Topilko, T;Diaz, SL;Pacheco, CM;Verny, F;Rousseau, CV;Kirst, C;Deleuze, C;Gaspar, P;Renier, N;
PMID: 35123655 | DOI: 10.1016/j.neuron.2022.01.012

Optimizing reproductive fitness in mammalians requires behavioral adaptations during pregnancy. Maternal preparatory nesting is an essential behavior for the survival of the upcoming litter. Brain-wide immediate early gene mapping in mice evoked by nesting sequences revealed that phases of nest construction strongly activate peptidergic neurons of the Edinger-Westphal nucleus in pregnant mice. Genetic ablation, bidirectional neuromodulation, and in vitro and in vivo activity recordings demonstrated that these neurons are essential to modulate arousal before sleep to promote nesting specifically. We show that these neurons enable the behavioral effects of progesterone on preparatory nesting by modulating a broad network of downstream targets. Our study deciphers the role of midbrain CART+ neurons in behavioral adaptations during pregnancy vital for reproductive fitness.
Recombinant adeno-associated virus 2/5-mediated gene transfer is reduced in the aged rat midbrain

Neurobiology of Aging

Polinski NK, Gombash SE, Manfredsson FP, Lipton JW, Kemp CJ, Cole-Strauss A, Kanaan NM, Steece-Collier K, Kuhn NC, Wohlgenant SL, Sortwell CE.
PMID:  http

Clinical trials are examining the efficacy of viral vector-mediated gene delivery for treating Parkinson’s disease (PD). While viral vector strategies have been successful in preclinical studies, to date clinical trials have disappointed. This may be due to the fact that preclinical studies fail to account for aging. Aging is the single greatest risk factor for developing PD and age alters cellular processes utilized by viral vectors. We hypothesized that the aged brain would be relatively resistant to transduction when compared to the young adult. We examined recombinant adeno-associated virus 2/5 mediated green fluorescent protein (rAAV2/5 GFP) expression in the young adult and aged rat nigrostriatal system. GFP overexpression was produced in both age groups. However, following rAAV2/5 GFP injection to the substantia nigra (SN) aged rats displayed 40-60% less GFP protein in the striatum, regardless of rat strain or duration of expression. Further, aged rats exhibited 40% fewer cells expressing GFP and 4-fold less GFP mRNA. rAAV2/5-mediated gene transfer is compromised in the aged rat midbrain, with deficiencies in early steps of transduction leading to significantly less mRNA and protein expression.
Enhancing neuronal chloride extrusion rescues?2/?3 GABAA-mediated analgesia in neuropathic pain

Nat Commun

2020 Feb 13

Lorenzo LE, Godin AG, Ferrini F, Bachand K, Plasencia-Fernandez I, Labrecque S, Girard A, Boudreau D, Kianicka I, Gagnon M, Doyon N, Ribeiro-da-Silva A, De Koninck Y
PMID: 32054836 | DOI: 10.1038/s41467-019-14154-6

Spinal disinhibition has been hypothesized to underlie pain hypersensitivity in neuropathic pain. Apparently contradictory mechanisms have been reported, raising questions on the best target to produce analgesia. Here, we show that nerve injury is associated with a reduction in the number of inhibitory synapses in the spinal dorsal horn. Paradoxically, this is accompanied by a BDNF-TrkB-mediated upregulation of synaptic GABAARs and by an ?1-to-?2GABAAR subunit switch, providing a mechanistic rationale for the analgesic action of the ?2,3GABAAR benzodiazepine-site ligand L838,417 after nerve injury. Yet, we demonstrate that impaired Cl- extrusion underlies the failure of L838,417 to induce analgesia at high doses due to a resulting collapse in Cl- gradient, dramatically limiting the benzodiazepine therapeutic window. In turn, enhancing KCC2 activity not only potentiated L838,417-induced analgesia, it rescued its analgesic potential at high doses, revealing a novel strategy for analgesia in pathological pain, by combined targeting of the appropriate GABAAR-subtypes and restoring Cl- homeostasis
Lateral septum as a melanocortin downstream site in obesity development

Cell reports

2023 May 11

Xu, Y;Jiang, Z;Li, H;Cai, J;Jiang, Y;Otiz-Guzman, J;Xu, Y;Arenkiel, BR;Tong, Q;
PMID: 37171957 | DOI: 10.1016/j.celrep.2023.112502

The melanocortin pathway is well established to be critical for body-weight regulation in both rodents and humans. Despite extensive studies focusing on this pathway, the downstream brain sites that mediate its action are not clear. Here, we found that, among the known paraventricular hypothalamic (PVH) neuron groups, those expressing melanocortin receptors 4 (PVHMc4R) preferably project to the ventral part of the lateral septum (LSv), a brain region known to be involved in emotional behaviors. Photostimulation of PVHMc4R neuron terminals in the LSv reduces feeding and causes aversion, whereas deletion of Mc4Rs or disruption of glutamate release from LSv-projecting PVH neurons causes obesity. In addition, disruption of AMPA receptor function in PVH-projected LSv neurons causes obesity. Importantly, chronic inhibition of PVH- or PVHMc4R-projected LSv neurons causes obesity associated with reduced energy expenditure. Thus, the LSv functions as an important node in mediating melanocortin action on body-weight regulation.
Examining ventral subiculum and basolateral amygdala projections to the nucleus accumbens shell: Differential expression of VGLuT1, VGLuT2 and VGaT in the rat

Neuroscience letters

2022 Aug 26

Jin, S;Maddern, XJ;Campbell, EJ;Lawrence, AJ;
PMID: 36038028 | DOI: 10.1016/j.neulet.2022.136858

Projections to the striatum are well-identified. For example, in the ventral striatum, two major inputs to the medial nucleus accumbens shell include the ventral subiculum and basolateral amygdala. However, the chemical phenotype(s) of these projection neurons remain unclear. In this study, we examined amygdalostriatal and corticostriatal connectivity in rats using injections of the retrograde tracer cholera toxin b into the nucleus accumbens shell. To determine the neurotransmitter identity of projection neurons, we combined retrograde tracing with RNAscope in-situ hybridization, using mRNA probes against vesicular transporters associated with glutamatergic (VGluT1 - Slc17a7, VGluT2 - Slc17a6) or GABAergic (VGaT - Slc32a1) neurotransmission. Confocal imaging was used to examine vesicular transporter mRNA expression in the ventral subiculum and basolateral amygdala inputs to the nucleus accumbens shell. Both projections contained mostly VGluT1-expressing neurons. Interestingly, almost a quarter of ventral subiculum to nucleus accumbens shell projections co-expressed VGluT1 and VGluT2 compared to a relatively small number (∼3%) that were co-expressed in basolateral amygdala to nucleus accumbens shell afferents. However, almost a quarter of basolateral amygdala to nucleus accumbens shell projections were VGaT-positive. These findings highlight the diverse proportions of glutamatergic and GABAergic afferents in two major projections to the nucleus accumbens shell and raise important questions for functional studies.
Slc12a8 in the lateral hypothalamus maintains energy metabolism and skeletal muscle functions during aging

Cell reports

2022 Jul 26

Ito, N;Takatsu, A;Ito, H;Koike, Y;Yoshioka, K;Kamei, Y;Imai, SI;
PMID: 35905718 | DOI: 10.1016/j.celrep.2022.111131

Sarcopenia and frailty are urgent socio-economic problems worldwide. Here we demonstrate a functional connection between the lateral hypothalamus (LH) and skeletal muscle through Slc12a8, a recently identified nicotinamide mononucleotide transporter, and its relationship to sarcopenia and frailty. Slc12a8-expressing cells are mainly localized in the LH. LH-specific knockdown of Slc12a8 in young mice decreases activity-dependent energy and carbohydrate expenditure and skeletal muscle functions, including muscle mass, muscle force, intramuscular glycolysis, and protein synthesis. LH-specific Slc12a8 knockdown also decreases sympathetic nerve signals at neuromuscular junctions and β2-adrenergic receptors in skeletal muscle, indicating the importance of the LH-sympathetic nerve-β2-adrenergic receptor axis. LH-specific overexpression of Slc12a8 in aged mice significantly ameliorates age-associated decreases in energy expenditure and skeletal muscle functions. Our results highlight an important role of Slc12a8 in the LH for regulation of whole-body metabolism and skeletal muscle functions and provide insights into the pathogenesis of sarcopenia and frailty during aging.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?