Ghosh A, Syed SM, Tanwar PS.
PMID: 28743800 | DOI: 10.1242/dev.149989
The epithelial lining of the Fallopian tube is vital for fertility, providing nutrition to gametes, and facilitating their transport. It is composed of two major cell types: secretory cells and ciliated cells. Interestingly, human ovarian cancer precursor lesions are primarily consisting of secretory cells. It is unclear why secretory cells are the dominant cell type in these lesions. Additionally, the underlying mechanisms governing Fallopian tube epithelial homoeostasis are currently unknown. In the present study, we showed that across the different developmental stages of mouse oviduct, secretory cells are the most frequently dividing cells of the oviductal epithelium. In vivo genetic cell lineage tracing showed that secretory cells not only self-renew, but also give rise to ciliated cells. Analysis of a Wnt reporter mouse model and different Wnt target genes showed that the Wnt signaling pathway is involved in oviductal epithelial homoeostasis. By developing two triple transgenic mouse models, we showed that Wnt/β-catenin signaling is essential for self-renewal as well as differentiation of secretory cells. In summary, our results provide mechanistic insight into oviductal epithelial homoeostasis.
Lee, DR;Rhodes, C;Mitra, A;Zhang, Y;Maric, D;Dale, RK;Petros, TJ;
PMID: 35175194 | DOI: 10.7554/eLife.71864
The ventricular zone (VZ) of the nervous system contains radial glia cells that were originally considered relatively homogenous in their gene expression, but a detailed characterization of transcriptional diversity in these VZ cells has not been reported. Here, we performed single-cell RNA sequencing to characterize transcriptional heterogeneity of neural progenitors within the VZ and subventricular zone (SVZ) of the ganglionic eminences (GEs), the source of all forebrain GABAergic neurons. By using a transgenic mouse line to enrich for VZ cells, we characterize significant transcriptional heterogeneity, both between GEs and within spatial subdomains of specific GEs. Additionally, we observe differential gene expression between E12.5 and E14.5 VZ cells, which could provide insights into temporal changes in cell fate. Together, our results reveal a previously unknown spatial and temporal genetic diversity of VZ cells in the ventral forebrain that will aid our understanding of initial fate decisions in the forebrain.
Pei, F;Ma, L;Jing, J;Feng, J;Yuan, Y;Guo, T;Han, X;Ho, TV;Lei, J;He, J;Zhang, M;Chen, JF;Chai, Y;
PMID: 36670126 | DOI: 10.1038/s41467-023-35977-4
Mesenchymal stem cells (MSCs) reside in microenvironments, referred to as niches, which provide structural support and molecular signals. Sensory nerves are niche components in the homeostasis of tissues such as skin, bone marrow and hematopoietic system. However, how the sensory nerve affects the behavior of MSCs remains largely unknown. Here we show that the sensory nerve is vital for mesenchymal tissue homeostasis and maintenance of MSCs in the continuously growing adult mouse incisor. Loss of sensory innervation leads to mesenchymal disorder and a decrease in MSCs. Mechanistically, FGF1 from the sensory nerve directly acts on MSCs by binding to FGFR1 and activates the mTOR/autophagy axis to sustain MSCs. Modulation of mTOR/autophagy restores the MSCs and rescues the mesenchymal tissue disorder of Fgfr1 mutant mice. Collectively, our study provides insights into the role of sensory nerves in the regulation of MSC homeostasis and the mechanism governing it.
Zhang, CH;Gao, Y;Hung, HH;Zhuo, Z;Grodzinsky, AJ;Lassar, AB;
PMID: 36435829 | DOI: 10.1038/s41467-022-35010-0
While prior work has established that articular cartilage arises from Prg4-expressing perichondrial cells, it is not clear how this process is specifically restricted to the perichondrium of synovial joints. We document that the transcription factor Creb5 is necessary to initiate the expression of signaling molecules that both direct the formation of synovial joints and guide perichondrial tissue to form articular cartilage instead of bone. Creb5 promotes the generation of articular chondrocytes from perichondrial precursors in part by inducing expression of signaling molecules that block a Wnt5a autoregulatory loop in the perichondrium. Postnatal deletion of Creb5 in the articular cartilage leads to loss of both flat superficial zone articular chondrocytes coupled with a loss of both Prg4 and Wif1 expression in the articular cartilage; and a non-cell autonomous up-regulation of Ctgf. Our findings indicate that Creb5 promotes joint formation and the subsequent development of articular chondrocytes by driving the expression of signaling molecules that both specify the joint interzone and simultaneously inhibit a Wnt5a positive-feedback loop in the perichondrium.
Lee, SH;Kim, N;Kim, M;Woo, SH;Han, I;Park, J;Kim, K;Park, KS;Kim, K;Shim, D;Park, SE;Zhang, JY;Go, DM;Kim, DY;Yoon, WK;Lee, SP;Chung, J;Kim, KW;Park, JH;Lee, SH;Lee, S;Ann, SJ;Lee, SH;Ahn, HS;Jeong, SC;Kim, TK;Oh, GT;Park, WY;Lee, HO;Choi, JH;
PMID: 36115863 | DOI: 10.1038/s41467-022-33202-2
Valvular inflammation triggered by hyperlipidemia has been considered as an important initial process of aortic valve disease; however, cellular and molecular evidence remains unclear. Here, we assess the relationship between plasma lipids and valvular inflammation, and identify association of low-density lipoprotein with increased valvular lipid and macrophage accumulation. Single-cell RNA sequencing analysis reveals the cellular heterogeneity of leukocytes, valvular interstitial cells, and valvular endothelial cells, and their phenotypic changes during hyperlipidemia leading to recruitment of monocyte-derived MHC-IIhi macrophages. Interestingly, we find activated PPARγ pathway in Cd36+ valvular endothelial cells increased in hyperlipidemic mice, and the conservation of PPARγ activation in non-calcified human aortic valves. While the PPARγ inhibition promotes inflammation, PPARγ activation using pioglitazone reduces valvular inflammation in hyperlipidemic mice. These results show that low-density lipoprotein is the main lipoprotein accumulated in the aortic valve during hyperlipidemia, leading to early-stage aortic valve disease, and PPARγ activation protects the aortic valve against inflammation.
Apc-mutant cells act as supercompetitors in intestinal tumour initiation
van Neerven, SM;de Groot, NE;Nijman, LE;Scicluna, BP;van Driel, MS;Lecca, MC;Warmerdam, DO;Kakkar, V;Moreno, LF;Vieira Braga, FA;Sanches, DR;Ramesh, P;Ten Hoorn, S;Aelvoet, AS;van Boxel, MF;Koens, L;Krawczyk, PM;Koster, J;Dekker, E;Medema, JP;Winton, DJ;Bijlsma, MF;Morrissey, E;Léveillé, N;Vermeulen, L;
PMID: 34079128 | DOI: 10.1038/s41586-021-03558-4
A delicate equilibrium of WNT agonists and antagonists in the intestinal stem cell (ISC) niche is critical to maintaining the ISC compartment, as it accommodates the rapid renewal of the gut lining. Disruption of this balance by mutations in the tumour suppressor gene APC, which are found in approximately 80% of all human colon cancers, leads to unrestrained activation of the WNT pathway1,2. It has previously been established that Apc-mutant cells have a competitive advantage over wild-type ISCs3. Consequently, Apc-mutant ISCs frequently outcompete all wild-type stem cells within a crypt, thereby reaching clonal fixation in the tissue and initiating cancer formation. However, whether the increased relative fitness of Apc-mutant ISCs involves only cell-intrinsic features or whether Apc mutants are actively involved in the elimination of their wild-type neighbours remains unresolved. Here we show that Apc-mutant ISCs function as bona fide supercompetitors by secreting WNT antagonists, thereby inducing differentiation of neighbouring wild-type ISCs. Lithium chloride prevented the expansion of Apc-mutant clones and the formation of adenomas by rendering wild-type ISCs insensitive to WNT antagonists through downstream activation of WNT by inhibition of GSK3β. Our work suggests that boosting the fitness of healthy cells to limit the expansion of pre-malignant clones may be a powerful strategy to limit the formation of cancers in high-risk individuals.
Patzek, S;Liu, Z;de la O, S;Chang, S;Byrnes, L;Zhang, X;Ornitz, D;Sneddon, J;
| DOI: 10.1016/j.isci.2023.106500
Pancreatic development requires spatially and temporally controlled expression of growth factors derived from mesenchyme. Here, we report that in mice the secreted factor Fgf9 is expressed principally by mesenchyme and then mesothelium during early development, then subsequently by both mesothelium and rare epithelial cells by E12.5 and onwards. Global knockout of the Fgf9 gene resulted in the reduction of pancreas and stomach size, as well as complete asplenia. The number of early Pdx1+ pancreatic progenitors was reduced at E10.5, as was proliferation of mesenchyme at E11.5. Although loss of Fgf9 did not interfere with differentiation of later epithelial lineages, single-cell RNA-Sequencing identified transcriptional programs perturbed upon loss of Fgf9 during pancreatic development, including loss of the transcription factor Barx1. Lastly, we identified conserved expression patterns of FGF9 and receptors in human fetal pancreas, suggesting that FGF9 expressed by pancreatic mesenchyme may similarly affect the development of the human pancreas.
Biehs B, Dijkgraaf GJP, Piskol R, Alicke B, Boumahdi S, Peale F, Gould SE, de Sauvage FJ.
PMID: 30297801 | DOI: 10.1038/s41586-018-0596-y
Despite the efficacy of Hedgehog pathway inhibitors in the treatment of basal cell carcinoma (BCC)1, residual disease persists in some patients and may contribute to relapse when treatment is discontinued2. Here, to study the effect of the Smoothened inhibitor vismodegib on tumour clearance, we have used a Ptch1-Trp53 mouse model of BCC3 and found that mice treated with vismodegib harbour quiescent residual tumours that regrow upon cessation of treatment. Profiling experiments revealed that residual BCCs initiate a transcriptional program that closely resembles that of stem cells of the interfollicular epidermis and isthmus, whereas untreated BCCs are more similar to the hair follicle bulge. This cell identity switch was enabled by a mostly permissive chromatin state accompanied by rapid Wnt pathway activation and reprogramming of super enhancers to drive activation of key transcription factors involved in cellular identity. Accordingly, treatment of BCC with both vismodegib and a Wnt pathway inhibitor reduced the residual tumour burden and enhanced differentiation. Our study identifies a resistance mechanism in which tumour cells evade treatment by adopting an alternative identity that does not rely on the original oncogenic driver for survival.
Sulic, AM;Das Roy, R;Papagno, V;Lan, Q;Saikkonen, R;Jernvall, J;Thesleff, I;Mikkola, ML;
PMID: 37318953 | DOI: 10.1016/j.celrep.2023.112643
Morphogenesis of ectodermal organs, such as hair, tooth, and mammary gland, starts with the formation of local epithelial thickenings, or placodes, but it remains to be determined how distinct cell types and differentiation programs are established during ontogeny. Here, we use bulk and single-cell transcriptomics and pseudotime modeling to address these questions in developing hair follicles and epidermis and produce a comprehensive transcriptomic profile of cellular populations in the hair placode and interplacodal epithelium. We report previously unknown cell populations and marker genes, including early suprabasal and genuine interfollicular basal markers, and propose the identity of suprabasal progenitors. By uncovering four different hair placode cell populations organized in three spatially distinct areas, with fine gene expression gradients between them, we posit early biases in cell fate establishment. This work is accompanied by a readily accessible online tool to stimulate further research on skin appendages and their progenitors.
Development (Cambridge, England)
Negretti, NM;Plosa, EJ;Benjamin, JT;Schuler, BA;Habermann, AC;Jetter, CS;Gulleman, P;Bunn, C;Hackett, AN;Ransom, M;Taylor, CJ;Nichols, D;Matlock, BK;Guttentag, SH;Blackwell, TS;Banovich, NE;Kropski, JA;Sucre, JMS;
PMID: 34927678 | DOI: 10.1242/dev.199512
Lung organogenesis requires precise timing and coordination to effect spatial organization and function of the parenchymal cells. To provide a systematic broad-based view of the mechanisms governing the dynamic alterations in parenchymal cells over crucial periods of development, we performed a single-cell RNA-sequencing time-series yielding 102,571 epithelial, endothelial and mesenchymal cells across nine time points from embryonic day 12 to postnatal day 14 in mice. Combining computational fate-likelihood prediction with RNA in situ hybridization and immunofluorescence, we explore lineage relationships during the saccular to alveolar stage transition. The utility of this publicly searchable atlas resource (www.sucrelab.org/lungcells) is exemplified by discoveries of the complexity of type 1 pneumocyte function and characterization of mesenchymal Wnt expression patterns during the saccular and alveolar stages - wherein major expansion of the gas-exchange surface occurs. We provide an integrated view of cellular dynamics in epithelial, endothelial and mesenchymal cell populations during lung organogenesis.
NOTUM from Apc-mutant cells biases clonal competition to initiate cancer
Flanagan, DJ;Pentinmikko, N;Luopajärvi, K;Willis, NJ;Gilroy, K;Raven, AP;Mcgarry, L;Englund, JI;Webb, AT;Scharaw, S;Nasreddin, N;Hodder, MC;Ridgway, RA;Minnee, E;Sphyris, N;Gilchrist, E;Najumudeen, AK;Romagnolo, B;Perret, C;Williams, AC;Clevers, H;Nummela, P;Lähde, M;Alitalo, K;Hietakangas, V;Hedley, A;Clark, W;Nixon, C;Kirschner, K;Jones, EY;Ristimäki, A;Leedham, SJ;Fish, PV;Vincent, JP;Katajisto, P;Sansom, OJ;
PMID: 34079124 | DOI: 10.1038/s41586-021-03525-z
The tumour suppressor APC is the most commonly mutated gene in colorectal cancer. Loss of Apc in intestinal stem cells drives the formation of adenomas in mice via increased WNT signalling1, but reduced secretion of WNT ligands increases the ability of Apc-mutant intestinal stem cells to colonize a crypt (known as fixation)2. Here we investigated how Apc-mutant cells gain a clonal advantage over wild-type counterparts to achieve fixation. We found that Apc-mutant cells are enriched for transcripts that encode several secreted WNT antagonists, with Notum being the most highly expressed. Conditioned medium from Apc-mutant cells suppressed the growth of wild-type organoids in a NOTUM-dependent manner. Furthermore, NOTUM-secreting Apc-mutant clones actively inhibited the proliferation of surrounding wild-type crypt cells and drove their differentiation, thereby outcompeting crypt cells from the niche. Genetic or pharmacological inhibition of NOTUM abrogated the ability of Apc-mutant cells to expand and form intestinal adenomas. We identify NOTUM as a key mediator during the early stages of mutation fixation that can be targeted to restore wild-type cell competitiveness and provide preventative strategies for people at a high risk of developing colorectal cancer.
Investigative Ophthalmology & Visual Science
Bonnet, C;Ruiz, M;Gonzalez, S;
RESULTS : All 4 Wnt ligands, 4 Wnt inhibitors, and Fzd7 were preferentially expressed in the basal layer of the cornea and limbus compared to the suprabasal layer (_P_