Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (19)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Multiplex Fluorescent Assay (6) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Red assay (5) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 HD Brown Assay (2) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD duplex reagent kit (1) Apply RNAscope 2.5 HD duplex reagent kit filter
  • RNAscope Fluorescent Multiplex Assay (1) Apply RNAscope Fluorescent Multiplex Assay filter

Research area

  • Development (9) Apply Development filter
  • Cancer (4) Apply Cancer filter
  • Bone (3) Apply Bone filter
  • Stem cell (2) Apply Stem cell filter
  • Stem Cells (2) Apply Stem Cells filter
  • Developmental (1) Apply Developmental filter
  • Eye (1) Apply Eye filter
  • Other (1) Apply Other filter
  • Other: Bone (1) Apply Other: Bone filter
  • Other: Ophthalmology (1) Apply Other: Ophthalmology filter
  • Signalling (1) Apply Signalling filter

Category

  • Publications (19) Apply Publications filter
Osteocyte- and late Osteoblast-derived NOTUM Reduces Cortical Bone Mass in Mice

American journal of physiology. Endocrinology and metabolism

2021 Mar 22

Nilsson, KH;Henning, P;El Shahawy, M;Wu, J;Koskela, A;Tuukkanen, J;Perret, C;Lerner, UH;Ohlsson, C;Movérare-Skrtic, S;
PMID: 33749332 | DOI: 10.1152/ajpendo.00565.2020

Osteoporosis is a common skeletal disease, with increased risk of fractures. Currently available osteoporosis treatments reduce the risk of vertebral fractures, mainly dependent on trabecular bone, whereas the effect on non-vertebral fractures, mainly dependent on cortical bone, is less pronounced. WNT signaling is a crucial regulator of bone homeostasis, and the activity of WNTs is inhibited by NOTUM, a secreted WNT lipase. We previously demonstrated that conditional inactivation of NOTUM in all osteoblast lineage cells increases the cortical but not the trabecular bone mass. The aim of the present study was to determine if NOTUM increasing cortical bone is derived from osteoblast precursors/early osteoblasts or from osteocytes/late osteoblasts. First, we demonstrated Notum mRNA expression in Dmp1-expressing osteocytes and late osteoblasts in cortical bone using in situ hybridization. We then developed a mouse model with inactivation of NOTUM in Dmp1 expressing osteocytes and late osteoblasts (Dmp1-creNotumflox/flox mice). We observed that the Dmp1-creNotumflox/flox mice displayed a substantial reduction of Notum mRNA in cortical bone, resulting in increased cortical bone mass and decreased cortical porosity in femur, but no change in trabecular bone volume fraction (BV/TV) in femur or in the lumbar vertebrae L5 in Dmp1-creNotumflox/flox mice as compared to control mice. In conclusion, osteocytes and late osteoblasts are the principal source of NOTUM in cortical bone, and NOTUM derived from osteocytes/late osteoblasts reduces cortical bone mass. These findings demonstrate that inhibition of osteocyte/late osteoblast-derived NOTUM might be an interesting pharmacological target to increase cortical bone mass and reduce non-vertebral fracture risk.
RSPO3 is important for trabecular bone and fracture risk in mice and humans

Nature communications

2021 Aug 13

Nilsson, KH;Henning, P;Shahawy, ME;Nethander, M;Andersen, TL;Ejersted, C;Wu, J;Gustafsson, KL;Koskela, A;Tuukkanen, J;Souza, PPC;Tuckermann, J;Lorentzon, M;Ruud, LE;Lehtimäki, T;Tobias, JH;Zhou, S;Lerner, UH;Richards, JB;Movérare-Skrtic, S;Ohlsson, C;
PMID: 34389713 | DOI: 10.1038/s41467-021-25124-2

With increasing age of the population, countries across the globe are facing a substantial increase in osteoporotic fractures. Genetic association signals for fractures have been reported at the RSPO3 locus, but the causal gene and the underlying mechanism are unknown. Here we show that the fracture reducing allele at the RSPO3 locus associate with increased RSPO3 expression both at the mRNA and protein levels, increased trabecular bone mineral density and reduced risk mainly of distal forearm fractures in humans. We also demonstrate that RSPO3 is expressed in osteoprogenitor cells and osteoblasts and that osteoblast-derived RSPO3 is the principal source of RSPO3 in bone and an important regulator of vertebral trabecular bone mass and bone strength in adult mice. Mechanistic studies revealed that RSPO3 in a cell-autonomous manner increases osteoblast proliferation and differentiation. In conclusion, RSPO3 regulates vertebral trabecular bone mass and bone strength in mice and fracture risk in humans.
Single mRNA detection of Wnt signaling pathway in the human limbus

Experimental eye research

2023 Jan 23

Bonnet, C;Ruiz, M;Gonzalez, S;Tseng, CH;Bourges, JL;Behar-Cohen, F;Deng, SX;
PMID: 36702232 | DOI: 10.1016/j.exer.2022.109337

Limbal epithelial stem/progenitor cells (LSCs) are adult stem cells located at the limbus, tightly regulated by their close microenvironment. It has been shown that Wnt signaling pathway is crucial for LSCs regulation. Previous differential gene profiling studies confirmed the preferential expression of specific Wnt ligands (WNT2, WNT6, WNT11, WNT16) and Wnt inhibitors (DKK1, SFRP5, WIF1, FRZB) in the limbal region compared to the cornea. Among all frizzled receptors, frizzled7 (Fzd7) was found to be preferentially expressed in the basal limbal epithelium. However, the exact localization of Wnt signaling molecules-producing cells in the limbus remains unknown. The current study aims to evaluate the in situ spatial expression of these 4 Wnt ligands, 4 Wnt inhibitors, and Fzd7. Wnt ligands, DKK1, and Fzd7 expression were scattered within the limbal epithelium, at a higher abundance in the basal layer than the superficial layer. SFRP5 expression was diffuse among the limbal epithelium, whereas WIF1 and FRZB expression was clustered at the basal limbal epithelial layer corresponding to the areas of high levels of Fzd7 expression. Quantitation of the fluorescence intensity showed that all 4 Wnt ligands, 3 Wnt inhibitors (WIF1, DKK1, FRZB), and Fzd7 were highly expressed at the basal layer of the limbus, then in a decreasing gradient toward the superficial layer (P < 0.05). The expression levels of all 4 Wnt ligands, FRZB, and Fzd7 in the basal epithelial layer were higher in the limbus than the central cornea (P < 0.05). All 4 Wnt ligands, 4 Wnt inhibitors, and Fzd7 were also highly expressed in the limbal stroma immediately below the epithelium but not in the cornea (P < 0.05). In addition, Fzd7 had a preferential expression in the superior limbus compared to other quadrants (P < 0.05). Taken together, the unique expression patterns of the Wnt molecules involved in the limbus suggests the involvement of both paracrine and autocrine effects in LSCs regulation, and a fine balance between Wnt activators and inhibitors to govern LSC fate.
Hedgehog signaling reprograms hair follicle niche fibroblasts to a hyper-activated state

Developmental Cell

2022 Jun 01

Liu, Y;Guerrero-Juarez, C;Xiao, F;Shettigar, N;Ramos, R;Kuan, C;Lin, Y;de Jesus Martinez Lomeli, L;Park, J;Oh, J;Liu, R;Lin, S;Tartaglia, M;Yang, R;Yu, Z;Nie, Q;Li, J;Plikus, M;
| DOI: 10.1016/j.devcel.2022.06.005

Hair follicle stem cells are regulated by dermal papilla fibroblasts, their principal signaling niche. Overactivation of Hedgehog signaling in the niche dramatically accelerates hair growth and induces follicle multiplication in mice. On single-cell RNA sequencing, dermal papilla fibroblasts increase heterogeneity to include new Wnt5ahigh states. Transcriptionally, mutant fibroblasts activate regulatory networks for Gli1, Alx3, Ebf1, Hoxc8, Sox18, and Zfp239. These networks jointly upregulate secreted factors for multiple hair morphogenesis and hair-growth-related pathways. Among these is non-conventional TGF-β ligand Scube3. We show that in normal mouse skin, Scube3 is expressed only in dermal papillae of growing, but not in resting follicles. SCUBE3 protein microinjection is sufficient to induce new hair growth, and pharmacological TGF-β inhibition rescues mutant hair hyper-activation phenotype. Moreover, dermal-papilla-enriched expression of SCUBE3 and its growth-activating effect are partially conserved in human scalp hair follicles. Thus, Hedgehog regulates mesenchymal niche function in the hair follicle via SCUBE3/TGF-β mechanism.
Gene-expression analysis of cementoblasts and osteoblasts.

J Periodontal Res. 2015 Jul 27.

Matthews BG, Roguljic H, Franceschetti T, Roeder E, Matic I, Vidovic I, Joshi P, Kum KY, Kalajzic I.
PMID: 26215316 | DOI: 10.1111/jre.12309

Abstract BACKGROUND AND OBJECTIVE: Cementum and bone are similar mineralized tissues, but cementum accumulates much more slowly than bone, does not have vasculature or innervation and does not undergo remodeling. Despite these differences, there are no well-established markers to distinguish cementoblasts from other mature mineralizing cells such as osteoblasts and odontoblasts. The purpose of this study was to assess differences in gene expression between cementoblasts and osteoblasts using gene profiling of cell populations isolated directly from osteocalcin-green fluorescent protein (OC-GFP) transgenic mice. MATERIAL AND METHODS: OC-GFP reporter mice were used as they show labeling of cementoblasts, osteoblasts and odontoblasts, but not of periodontal ligament fibroblasts, within the periodontium. We sorted cells digested from the molar root surface to isolate OC-GFP+ cementoblasts. Osteoblasts were isolated from calvarial digests. Microarray analysis was performed, and selected results were confirmed by real-time PCR and immunostaining or in situ hybridization. RESULTS: Microarray analysis identified 95 genes that were expressed at least two-fold higher in cementoblasts than in osteoblasts. Our analysis indicated that the Wnt signaling pathway was differentially regulated, as were genes related to skeletal development. Real-time PCR confirmed that expression of the Wnt inhibitors Wnt inhibitory factor 1 (Wif1) and secreted frizzled-related protein 1 (Sfrp1) was elevated in cementoblasts compared with osteoblasts, and Wif1 expression was localized to the apical root region. In addition, the transcription factor BARX homeobox 1 (Barx1) was expressed at higher levels in cementoblasts, and immunohistochemistry indicated that BARX1 was expressed in apical cementoblasts and cementocytes, but not in osteoblasts or odontoblasts. CONCLUSION: The OC-GFP mouse provides a good model for selectively isolating cementoblasts, and allowed for identification of differentially expressed genes between cementoblasts and osteoblasts.
B4GALNT3 regulates glycosylation of sclerostin and bone mass

EBioMedicine

2023 Apr 04

Movérare-Skrtic, S;Voelkl, J;Nilsson, KH;Nethander, M;Luong, TTD;Alesutan, I;Li, L;Wu, J;Horkeby, K;Lagerquist, MK;Koskela, A;Tuukkanen, J;Tobias, JH;Lerner, UH;Henning, P;Ohlsson, C;
PMID: 37023531 | DOI: 10.1016/j.ebiom.2023.104546

Global sclerostin inhibition reduces fracture risk efficiently but has been associated with cardiovascular side effects. The strongest genetic signal for circulating sclerostin is in the B4GALNT3 gene region, but the causal gene is unknown. B4GALNT3 expresses the enzyme beta-1,4-N-acetylgalactosaminyltransferase 3 that transfers N-acetylgalactosamine onto N-acetylglucosaminebeta-benzyl on protein epitopes (LDN-glycosylation).To determine if B4GALNT3 is the causal gene, B4galnt3-/- mice were developed and serum levels of total sclerostin and LDN-glycosylated sclerostin were analysed and mechanistic studies were performed in osteoblast-like cells. Mendelian randomization was used to determine causal associations.B4galnt3-/- mice had higher circulating sclerostin levels, establishing B4GALNT3 as a causal gene for circulating sclerostin levels, and lower bone mass. However, serum levels of LDN-glycosylated sclerostin were lower in B4galnt3-/- mice. B4galnt3 and Sost were co-expressed in osteoblast-lineage cells. Overexpression of B4GALNT3 increased while silencing of B4GALNT3 decreased the levels of LDN-glycosylated sclerostin in osteoblast-like cells. Mendelian randomization demonstrated that higher circulating sclerostin levels, genetically predicted by variants in the B4GALNT3 gene, were causally associated with lower BMD and higher risk of fractures but not with higher risk of myocardial infarction or stroke. Glucocorticoid treatment reduced B4galnt3 expression in bone and increased circulating sclerostin levels and this may contribute to the observed glucocorticoid-induced bone loss.B4GALNT3 is a key factor for bone physiology via regulation of LDN-glycosylation of sclerostin. We propose that B4GALNT3-mediated LDN-glycosylation of sclerostin may be a bone-specific osteoporosis target, separating the anti-fracture effect of global sclerostin inhibition, from indicated cardiovascular side effects.Found in acknowledgements.
In vivo genetic cell lineage tracing reveals that oviductal secretory cells self-renew and give rise to ciliated cells.

Development.

2017 Jul 25

Ghosh A, Syed SM, Tanwar PS.
PMID: 28743800 | DOI: 10.1242/dev.149989

The epithelial lining of the Fallopian tube is vital for fertility, providing nutrition to gametes, and facilitating their transport. It is composed of two major cell types: secretory cells and ciliated cells. Interestingly, human ovarian cancer precursor lesions are primarily consisting of secretory cells. It is unclear why secretory cells are the dominant cell type in these lesions. Additionally, the underlying mechanisms governing Fallopian tube epithelial homoeostasis are currently unknown. In the present study, we showed that across the different developmental stages of mouse oviduct, secretory cells are the most frequently dividing cells of the oviductal epithelium. In vivo genetic cell lineage tracing showed that secretory cells not only self-renew, but also give rise to ciliated cells. Analysis of a Wnt reporter mouse model and different Wnt target genes showed that the Wnt signaling pathway is involved in oviductal epithelial homoeostasis. By developing two triple transgenic mouse models, we showed that Wnt/β-catenin signaling is essential for self-renewal as well as differentiation of secretory cells. In summary, our results provide mechanistic insight into oviductal epithelial homoeostasis.

Creb5 coordinates synovial joint formation with the genesis of articular cartilage

Nature communications

2022 Nov 26

Zhang, CH;Gao, Y;Hung, HH;Zhuo, Z;Grodzinsky, AJ;Lassar, AB;
PMID: 36435829 | DOI: 10.1038/s41467-022-35010-0

While prior work has established that articular cartilage arises from Prg4-expressing perichondrial cells, it is not clear how this process is specifically restricted to the perichondrium of synovial joints. We document that the transcription factor Creb5 is necessary to initiate the expression of signaling molecules that both direct the formation of synovial joints and guide perichondrial tissue to form articular cartilage instead of bone. Creb5 promotes the generation of articular chondrocytes from perichondrial precursors in part by inducing expression of signaling molecules that block a Wnt5a autoregulatory loop in the perichondrium. Postnatal deletion of Creb5 in the articular cartilage leads to loss of both flat superficial zone articular chondrocytes coupled with a loss of both Prg4 and Wif1 expression in the articular cartilage; and a non-cell autonomous up-regulation of Ctgf. Our findings indicate that Creb5 promotes joint formation and the subsequent development of articular chondrocytes by driving the expression of signaling molecules that both specify the joint interzone and simultaneously inhibit a Wnt5a positive-feedback loop in the perichondrium.
Apc-mutant cells act as supercompetitors in intestinal tumour initiation

Nature

2021 Jun 01

van Neerven, SM;de Groot, NE;Nijman, LE;Scicluna, BP;van Driel, MS;Lecca, MC;Warmerdam, DO;Kakkar, V;Moreno, LF;Vieira Braga, FA;Sanches, DR;Ramesh, P;Ten Hoorn, S;Aelvoet, AS;van Boxel, MF;Koens, L;Krawczyk, PM;Koster, J;Dekker, E;Medema, JP;Winton, DJ;Bijlsma, MF;Morrissey, E;Léveillé, N;Vermeulen, L;
PMID: 34079128 | DOI: 10.1038/s41586-021-03558-4

A delicate equilibrium of WNT agonists and antagonists in the intestinal stem cell (ISC) niche is critical to maintaining the ISC compartment, as it accommodates the rapid renewal of the gut lining. Disruption of this balance by mutations in the tumour suppressor gene APC, which are found in approximately 80% of all human colon cancers, leads to unrestrained activation of the WNT pathway1,2. It has previously been established that Apc-mutant cells have a competitive advantage over wild-type ISCs3. Consequently, Apc-mutant ISCs frequently outcompete all wild-type stem cells within a crypt, thereby reaching clonal fixation in the tissue and initiating cancer formation. However, whether the increased relative fitness of Apc-mutant ISCs involves only cell-intrinsic features or whether Apc mutants are actively involved in the elimination of their wild-type neighbours remains unresolved. Here we show that Apc-mutant ISCs function as bona fide supercompetitors by secreting WNT antagonists, thereby inducing differentiation of neighbouring wild-type ISCs. Lithium chloride prevented the expansion of Apc-mutant clones and the formation of adenomas by rendering wild-type ISCs insensitive to WNT antagonists through downstream activation of WNT by inhibition of GSK3β. Our work suggests that boosting the fitness of healthy cells to limit the expansion of pre-malignant clones may be a powerful strategy to limit the formation of cancers in high-risk individuals.
A cell identity switch allows residual BCC to survive Hedgehog pathway inhibition.

Nature.

2018 Oct 08

Biehs B, Dijkgraaf GJP, Piskol R, Alicke B, Boumahdi S, Peale F, Gould SE, de Sauvage FJ.
PMID: 30297801 | DOI: 10.1038/s41586-018-0596-y

Despite the efficacy of Hedgehog pathway inhibitors in the treatment of basal cell carcinoma (BCC)1, residual disease persists in some patients and may contribute to relapse when treatment is discontinued2. Here, to study the effect of the Smoothened inhibitor vismodegib on tumour clearance, we have used a Ptch1-Trp53 mouse model of BCC3 and found that mice treated with vismodegib harbour quiescent residual tumours that regrow upon cessation of treatment. Profiling experiments revealed that residual BCCs initiate a transcriptional program that closely resembles that of stem cells of the interfollicular epidermis and isthmus, whereas untreated BCCs are more similar to the hair follicle bulge. This cell identity switch was enabled by a mostly permissive chromatin state accompanied by rapid Wnt pathway activation and reprogramming of super enhancers to drive activation of key transcription factors involved in cellular identity. Accordingly, treatment of BCC with both vismodegib and a Wnt pathway inhibitor reduced the residual tumour burden and enhanced differentiation. Our study identifies a resistance mechanism in which tumour cells evade treatment by adopting an alternative identity that does not rely on the original oncogenic driver for survival.

Transcriptomic landscape of early hair follicle and epidermal development

Cell reports

2023 Jun 13

Sulic, AM;Das Roy, R;Papagno, V;Lan, Q;Saikkonen, R;Jernvall, J;Thesleff, I;Mikkola, ML;
PMID: 37318953 | DOI: 10.1016/j.celrep.2023.112643

Morphogenesis of ectodermal organs, such as hair, tooth, and mammary gland, starts with the formation of local epithelial thickenings, or placodes, but it remains to be determined how distinct cell types and differentiation programs are established during ontogeny. Here, we use bulk and single-cell transcriptomics and pseudotime modeling to address these questions in developing hair follicles and epidermis and produce a comprehensive transcriptomic profile of cellular populations in the hair placode and interplacodal epithelium. We report previously unknown cell populations and marker genes, including early suprabasal and genuine interfollicular basal markers, and propose the identity of suprabasal progenitors. By uncovering four different hair placode cell populations organized in three spatially distinct areas, with fine gene expression gradients between them, we posit early biases in cell fate establishment. This work is accompanied by a readily accessible online tool to stimulate further research on skin appendages and their progenitors.
A single-cell atlas of mouse lung development

Development (Cambridge, England)

2021 Dec 15

Negretti, NM;Plosa, EJ;Benjamin, JT;Schuler, BA;Habermann, AC;Jetter, CS;Gulleman, P;Bunn, C;Hackett, AN;Ransom, M;Taylor, CJ;Nichols, D;Matlock, BK;Guttentag, SH;Blackwell, TS;Banovich, NE;Kropski, JA;Sucre, JMS;
PMID: 34927678 | DOI: 10.1242/dev.199512

Lung organogenesis requires precise timing and coordination to effect spatial organization and function of the parenchymal cells. To provide a systematic broad-based view of the mechanisms governing the dynamic alterations in parenchymal cells over crucial periods of development, we performed a single-cell RNA-sequencing time-series yielding 102,571 epithelial, endothelial and mesenchymal cells across nine time points from embryonic day 12 to postnatal day 14 in mice. Combining computational fate-likelihood prediction with RNA in situ hybridization and immunofluorescence, we explore lineage relationships during the saccular to alveolar stage transition. The utility of this publicly searchable atlas resource (www.sucrelab.org/lungcells) is exemplified by discoveries of the complexity of type 1 pneumocyte function and characterization of mesenchymal Wnt expression patterns during the saccular and alveolar stages - wherein major expansion of the gas-exchange surface occurs. We provide an integrated view of cellular dynamics in epithelial, endothelial and mesenchymal cell populations during lung organogenesis.

Pages

  • 1
  • 2
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?