ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
J Thorac Oncol. 2018 Oct 5.
2018 Oct 05
Humphries MP, McQuaid S, Craig S, Bingham V, Maxwell P, Maurya M, McLean F, Sampson J, Higgins P, Greene C, James J, Salto-Tellez M.
PMID: 30296485 | DOI: 10.1016/j.jtho.2018.09.025
Proceedings of the National Academy of Sciences of the United States of America
2023 May 30
Dutta Banik, D;Martin, LJ;Tang, T;Soboloff, J;Tourtellotte, WG;Pierchala, BA;
PMID: 37216536 | DOI: 10.1073/pnas.2217595120
Neuron
2023 Jun 15
Deng, L;Dourado, M;Reese, RM;Huang, K;Shields, SD;Stark, KL;Maksymetz, J;Lin, H;Kaminker, JS;Jung, M;Foreman, O;Tao, J;Ngu, H;Joseph, V;Roose-Girma, M;Tam, L;Lardell, S;Orrhult, LS;Karila, P;Allard, J;Hackos, DH;
PMID: 37352856 | DOI: 10.1016/j.neuron.2023.05.024
Science translational medicine
2022 Dec 07
Tang, YL;Liu, AL;Lv, SS;Zhou, ZR;Cao, H;Weng, SJ;Zhang, YQ;
PMID: 36475906 | DOI: 10.1126/scitranslmed.abq6474
J Neuropathol Exp Neurol.
2017 Dec 11
Zapka Z, Dörner E, Dreschmann V, Sakamato N, Kristiansen G, Calaminus G, Vokuhl C, MD, Leuschner I, Pietsch T.
PMID: 29237087 | DOI: 10.1093/jnen/nlx106
Central nervous system germinomas are characterized by a massive immune cell infiltrate. We systematically characterized these immune cells in 28 germinomas by immunophenotyping and image analysis. mRNA expression was analyzed by Nanostring technology and in situ RNA hybridization. Tumor infiltrating lymphocytes (TILs) were composed of 61.8% ± 3.1% (mean ± SE) CD3-positive T cells, including 45.2% ± 3.5% of CD4-positive T-helper cells, 23.4% ± 1.5% of CD8-positive cytotoxic T cells, 5.5% ± 0.9% of FoxP3-positive regulatory T cells, and 11.9% ±1.3% PD-1-positive TILs. B cells accounted for 35.8% ± 2.9% of TILs and plasma cells for 9.3% ± 1.6%. Tumor-associated macrophages consisted of clusters of activated PD-L1-positive macrophages and interspersed anti-inflammatory macrophages expressing CD163. Germinoma cells did not express PD-L1. Expression of genes encoding immune cell markers and cytokines was high and comparable to mRNA levels in lymph node tissue. IFNG and IL10 mRNA was detected in subfractions of TILs and in PD-L1-positive macrophages. Taken together, the strong immune reaction observed in germinomas involves inflammatory as well as various suppressive mechanisms. Expression of PD-1 and PD-L1 and infiltration of cytotoxic T cells are biomarkers predictive of response to anti-PD-1/PD-L1 therapies, constituting a rationale for possible novel treatment approaches.
Cell.
2017 Jul 13
Knowland D, Lilascharoen V, Pacia CP, Shin S, Wang EH, Lim BK.
PMID: 28689640 | DOI: 10.1016/j.cell.2017.06.015
Major depressive disorder (MDD) patients display a common but often variable set of symptoms making successful, sustained treatment difficult to achieve. Separate depressive symptoms may be encoded by differential changes in distinct circuits in the brain, yet how discrete circuits underlie behavioral subsets of depression and how they adapt in response to stress has not been addressed. We identify two discrete circuits of parvalbumin-positive (PV) neurons in the ventral pallidum (VP) projecting to either the lateral habenula or ventral tegmental area contributing to depression. We find that these populations undergo different electrophysiological adaptations in response to social defeat stress, which are normalized by antidepressant treatment. Furthermore, manipulation of each population mediates either social withdrawal or behavioral despair, but not both. We propose that distinct components of the VP PV circuit can subserve related, yet separate depressive-like phenotypes in mice, which could ultimately provide a platform for symptom-specific treatments of depression.
Animals : an open access journal from MDPI
2022 Oct 04
Schöniger, S;Jasani, B;
PMID: 36230402 | DOI: 10.3390/ani12192661
J Neurosci.
2019 Mar 12
Liu SS, Pickens S, Burma NE, Ibarra-Lecue I, Yang H, Xue L, Cook C, Hakimian JK, Severino AL, Lueptow L, Komarek K, Taylor AMW, Olmstead MC, Carroll FI, Bass CE, Andrews AM, Walwyn W, Trang T, Evans CJ, Leslie F, Cahill CM.
PMID: 30862664 | DOI: 10.1523/JNEUROSCI.0274-19.2019
Pain is a multidimensional experience and negative affect, or how much the pain is "bothersome", significantly impacts the sufferers' quality of life. It is well established that the kappa opioid system contributes to depressive and dysphoric states, but whether this system contributes to the negative affect precipitated by the occurrence of chronic pain remains tenuous. Using a model of persistent pain, we show by quantitative RT-PCR, florescence in situ hybridization, western blotting and GTPgS autoradiography an upregulation of expression and the function of kappa opioid receptors (KORs) and its endogenous ligand dynorphin in the mesolimbic circuitry in animals with chronic pain compared to surgical controls. Using in vivo microdialysis and microinjection of drugs into the mesolimbic dopamine system, we demonstrate that inhibiting KORs reinstates evoked dopamine release and reward related behaviors in chronic pain animals. Chronic pain enhanced KOR agonist-induced place aversion in a sex-dependent manner. Using various place preference paradigms, we show that activation of KORs drives pain aversive states in male but not female mice. However, KOR antagonist treatment was effective in alleviating anxiogenic and depressive affective-like behaviors in both sexes. Finally, ablation of KORs from dopamine neurons using AAV-TH-cre in KORloxP mice prevented pain-induced aversive states as measured by place aversion assays. Our results strongly support the use of KOR antagonists as therapeutic adjuvants to alleviate the emotional, tonic-aversive component of chronic pain, which is argued to be the most significant component of the pain experience that impacts patients' quality of life.Significance StatementWe show that KORs are sufficient to drive the tonic-aversive component of chronic pain - the emotional component of pain that is argued to significantly impact a patient's quality of life. The impact of our study is broadly relevant to affective disorders associated with disruption of reward circuitry and thus likely contributes to many of the devastating sequelae of chronic pain, including the poor response to treatment of many patients, debilitating affective disorders (other disorders including anxiety and depression that demonstrate high co-morbidity with chronic pain) and substance abuse. Indeed, co-existing psychopathology increases pain intensity, pain-related disability and effectiveness of treatments (Jamison and Edwards, 2013).
Oncotarget.
2016 Sep 15
Mei Y, Bi WL, Greenwald NF, Du Z, Agar NY, Kaiser UB, Woodmansee WW, Reardon DA, Freeman GJ, Fecci PE, Laws ER Jr, Santagata S, Dunn GP, Dunn IF.
PMID: 27655724 | DOI: 10.18632/oncotarget.12088
Abstract
PURPOSE:
Subsets of pituitary tumors exhibit an aggressive clinical courses and recur despite surgery, radiation, and chemotherapy. Because modulation of the immune response through inhibition of T-cell checkpoints has led to durable clinical responses in multiple malignancies, we explored whether pituitary adenomas express immune-related biomarkers that could suggest suitability for immunotherapy. Specifically, programmed death ligand 1 (PD-L1) has emerged as a potential biomarker whose expression may portend more favorable responses to immune checkpoint blockade therapies. We thus investigated the expression of PD-L1 in pituitary adenomas.
METHODS:
PD-L1 RNA and protein expression were evaluated in 48 pituitary tumors, including functioning and non-functioning adenomas as well as atypical and recurrent tumors. Tumor infiltrating lymphocyte populations were also assessed by immunohistochemistry.
RESULTS:
Pituitary tumors express variable levels of PD-L1 transcript and protein. PD-L1 RNA and protein expression were significantly increased in functioning (growth hormone and prolactin-expressing) pituitary adenomas compared to non-functioning (null cell and silent gonadotroph) adenomas. Moreover, primary pituitary adenomas harbored higher levels of PD-L1 mRNA compared to recurrent tumors. Tumor infiltrating lymphocytes were observed in all pituitary tumors and were positively correlated with increased PD-L1 expression, particularly in the functional subtypes.
CONCLUSIONS:
Human pituitary adenomas harbor PD-L1 across subtypes, with significantly higher expression in functioning adenomas compared to non-functioning adenomas. This expression is accompanied by the presence of tumor infiltrating lymphocytes. These findings suggest the existence of an immune response to pituitary tumors and raise the possibility of considering checkpoint blockade immunotherapy in cases refractory to conventional management.
J Neurosci.
2019 Feb 06
Pomrenze MB, Tovar-Diaz J, Blasio A, Maiya R, Giovanetti SM, Lei K, Morikawa H, Hopf FW, Messing RO.
PMID: 30530860 | DOI: 10.1523/JNEUROSCI.2143-18.2018
The central amygdala (CeA) is important for fear responses to discrete cues. Recent findings indicate that the CeA also contributes to states of sustained apprehension that characterize anxiety, although little is known about the neural circuitry involved. The stress neuropeptide corticotropin releasing factor (CRF) is anxiogenic and is produced by subpopulations of neurons in the lateral CeA and the dorsolateral bed nucleus of the stria terminalis (dlBST). Here we investigated the function of these CRF neurons in stress-induced anxiety using chemogenetics in male rats that express Cre recombinase from a Crh promoter. Anxiety-like behavior was mediated by CRF projections from the CeA to the dlBST and depended on activation of CRF1 receptors and CRF neurons within the dlBST. Our findings identify a CRFCeA→CRFdlBST circuit for generating anxiety-like behavior and provide mechanistic support for recent human and primate data suggesting that the CeA and BST act together to generate states of anxiety.SIGNIFICANCE STATEMENT Anxiety is a negative emotional state critical to survival, but persistent, exaggerated apprehension causes substantial morbidity. Identifying brain regions and neurotransmitter systems that drive anxiety can help in developing effective treatment. Much evidence in rodents indicates that neurons in the bed nucleus of the stria terminalis (BST) generate anxiety-like behaviors, but more recent findings also implicate neurons of the CeA. The neuronal subpopulations and circuitry that generate anxiety are currently subjects of intense investigation. Here we show that CeA neurons that release the stress neuropeptide corticotropin-releasing factor (CRF) drive anxiety-like behaviors in rats via a pathway to dorsal BST that activates local BST CRF neurons. Thus, our findings identify a CeA→BST CRF neuropeptide circuit that generates anxiety-like behavior.
Oncotarget
2017 Feb 17
Koh J, Ock CY, Kim JW, Nam SK, Kwak Y, Yun S, Ahn SH, Park DJ, Kim HH, Kim WH, Lee HS.
PMID: - | DOI: 10.18632/oncotarget.15465
We co-assessed PD-L1 expression and CD8+ tumor-infiltrating lymphocytes in gastric cancer (GC), and categorized into 4 microenvironment immune types. Immunohistochemistry (PD-L1, CD8, Foxp3, E-cadherin, and p53), PD-L1 mRNA in situ hybridization (ISH), microsatellite instability (MSI), and EBV ISH were performed in 392 stage II/III GCs treated with curative surgery and fluoropyrimidine-based adjuvant chemotherapy, and two public genome databases were analyzed for validation. PD-L1+ was found in 98/392 GCs (25.0%). The proportions of immune types are as follows: PD-L1+/CD8High, 22.7%; PD-L1−/CD8Low, 22.7%; PD-L1+/CD8Low, 2.3%; PD-L1−/CD8High, 52.3%. PD-L1+/CD8High type accounted for majority of EBV+ and MSI-high (MSI-H) GCs (92.0% and 66.7%, respectively), and genome analysis from public datasets demonstrated similar pattern. PD-L1−/CD8High showed the best overall survival (OS) and PD-L1−/CD8Low the worst (P < 0.001). PD-L1 expression alone was not associated with OS, however, PD-L1−/CD8High type compared to PD-L1+/CD8High was independent favorable prognostic factor of OS by multivariate analysis (P = 0.042). Adaptation of recent molecular classification based on EBV, MSI, E-cadherin, and p53 showed no significant survival differences. These findings support the close relationship between PD-L1/CD8 status based immune types and EBV+, MSI-H GCs, and their prognostic significance in stage II/III GCs.
Hum Pathol. 2018 Dec 27.
2018 Dec 27
Guo D, Zhao X, Wang A, Xie Q, Xu X, Sun J.
PMID: 30594747 | DOI: 10.1016/j.humpath.2018.10.041
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com