ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
2022 Aug 04
Mesa-Ciller, C;Turiel, G;Guajardo-Grence, A;Lopez-Rodriguez, AB;Egea, J;De Bock, K;Aragonés, J;Urrutia, AA;
PMID: 35929074 | DOI: 10.1177/0271678X221118236
Nat Commun.
2017 Nov 03
Tommiska J, Känsäkoski J, Skibsbye L, Vaaralahti K, Liu X, Lodge EJ, Tang C, Yuan L, Fagerholm R, Kanters JK, Lahermo P, Kaunisto M, Keski-Filppula R, Vuoristo S, Pulli K, Ebeling T, Valanne L, Sankila EM, Kivirikko S, Lääperi M, Casoni F, Giacobini P, Ph
PMID: 29097701 | DOI: 10.1038/s41467-017-01429-z
Familial growth hormone deficiency provides an opportunity to identify new genetic causes of short stature. Here we combine linkage analysis with whole-genome resequencing in patients with growth hormone deficiency and maternally inherited gingival fibromatosis. We report that patients from three unrelated families harbor either of two missense mutations, c.347G>T p.(Arg116Leu) or c.1106C>T p.(Pro369Leu), in KCNQ1, a gene previously implicated in the long QT interval syndrome. Kcnq1 is expressed in hypothalamic GHRH neurons and pituitary somatotropes. Co-expressing KCNQ1 with the KCNE2 β-subunit shows that both KCNQ1 mutants increase current levels in patch clamp analyses and are associated with reduced pituitary hormone secretion from AtT-20 cells. In conclusion, our results reveal a role for the KCNQ1 potassium channel in the regulation of human growth, and show that growth hormone deficiency associated with maternally inherited gingival fibromatosis is an allelic disorder with cardiac arrhythmia syndromes caused by KCNQ1 mutations.
Cells
2021 May 03
de Lima, JBM;Debarba, LK;Rupp, AC;Qi, N;Ubah, C;Khan, M;Didyuk, O;Ayyar, I;Koch, M;Sandoval, DA;Sadagurski, M;
PMID: 34063647 | DOI: 10.3390/cells10051093
Nature
2021 Nov 01
Lam, BYH;Williamson, A;Finer, S;Day, FR;Tadross, JA;Gonçalves Soares, A;Wade, K;Sweeney, P;Bedenbaugh, MN;Porter, DT;Melvin, A;Ellacott, KLJ;Lippert, RN;Buller, S;Rosmaninho-Salgado, J;Dowsett, GKC;Ridley, KE;Xu, Z;Cimino, I;Rimmington, D;Rainbow, K;Duckett, K;Holmqvist, S;Khan, A;Dai, X;Bochukova, EG;Genes & Health Research Team, ;Trembath, RC;Martin, HC;Coll, AP;Rowitch, DH;Wareham, NJ;van Heel, DA;Timpson, N;Simerly, RB;Ong, KK;Cone, RD;Langenberg, C;Perry, JRB;Yeo, GS;O'Rahilly, S;
PMID: 34732894 | DOI: 10.1038/s41586-021-04088-9
Sci Rep.
2016 Oct 11
He L, Vanlandewijck M, Raschperger E, Andaloussi Mäe M, Jung B, Lebouvier T, Ando K, Hofmann J, Keller A, Betsholtz C.
PMID: 27725773 | DOI: 10.1038/srep35108
Pericytes, the mural cells of blood microvessels, regulate microvascular development and function and have been implicated in many brain diseases. However, due to a paucity of defining markers, pericyte identification and functional characterization remain ambiguous and data interpretation problematic. In mice carrying two transgenic reporters, Pdgfrb-eGFP and NG2-DsRed, we found that double-positive cells were vascular mural cells, while the single reporters marked additional, but non-overlapping, neuroglial cells. Double-positive cells were isolated by fluorescence-activated cell sorting (FACS) and analyzed by RNA sequencing. To reveal defining patterns of mural cell transcripts, we compared the RNA sequencing data with data from four previously published studies. The meta-analysis provided a conservative catalogue of 260 brain mural cell-enriched gene transcripts. We validated pericyte-specific expression of two novel markers, vitronectin (Vtn) and interferon-induced transmembrane protein 1 (Ifitm1), using fluorescent in situ hybridization and immunohistochemistry. We further analyzed signaling pathways and interaction networks of the pericyte-enriched genes in silico. This work provides novel insight into the molecular composition of brain mural cells. The reported gene catalogue facilitates identification of brain pericytes by providing numerous new candidate marker genes and is a rich source for new hypotheses for future studies of brain mural cell physiology and pathophysiology.
Nature metabolism
2022 Oct 01
Steuernagel, L;Lam, BYH;Klemm, P;Dowsett, GKC;Bauder, CA;Tadross, JA;Hitschfeld, TS;Del Rio Martin, A;Chen, W;de Solis, AJ;Fenselau, H;Davidsen, P;Cimino, I;Kohnke, SN;Rimmington, D;Coll, AP;Beyer, A;Yeo, GSH;Brüning, JC;
PMID: 36266547 | DOI: 10.1038/s42255-022-00657-y
Neuron
2022 Mar 10
Ayloo, S;Lazo, CG;Sun, S;Zhang, W;Cui, B;Gu, C;
PMID: 35294899 | DOI: 10.1016/j.neuron.2022.02.017
Developmental cell
2023 Jan 19
Rodrigo Albors, A;Singer, GA;Llorens-Bobadilla, E;Frisén, J;May, AP;Ponting, CP;Storey, KG;
PMID: 36706756 | DOI: 10.1016/j.devcel.2023.01.003
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com