Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
Alvarez-Bagnarol, Y;García, R;Vendruscolo, LF;Morales, M;
PMID: 37270620 | DOI: 10.1038/s41386-023-01620-5
Opioid withdrawal signs, such as hyperalgesia, are manifestations of opioid use disorder that may contribute to opioid seeking and taking. We have previously identified an association between dorsal raphe (DR) neurons and the expression of hyperalgesia during spontaneous heroin withdrawal. Here, we found that chemogenetic inhibition of DR neurons decreased hyperalgesia during spontaneous heroin withdrawal in male and female C57/B6 mice. By neuroanatomy, we identified three major subtypes of DR neurons expressing μ-opioid receptors (MOR) that were activated in hyperalgesia during spontaneous withdrawal, those expressing vesicular GABA transporter (VGaT), glutamate transporter 3 (VGluT3), or co-expressing VGluT3 and tryptophan hydroxylase (TPH). In contrast, we identified a small population of DR-MOR neurons expressing solely TPH, which were not activated in hyperalgesia during spontaneous withdrawal. Collectively, these findings indicate a role of the DR in hyperalgesia during spontaneous heroin withdrawal mediated, in part, by the activation of local MOR-GABAergic, MOR-glutamatergic and MOR-co-releasing glutamatergic-serotonergic neurons. We found that specific chemogenetic inhibition of DR-VGaT neurons blocked hyperalgesia during spontaneous heroin withdrawal in male and female mice. Collectively, these findings indicate that DR-GABAergic neurons play a role in the expression of hyperalgesia during spontaneous heroin withdrawal.
Carazo-Arias, E;Nguyen, P;Kass, M;Jee, H;Nautiyal, K;Magalong, V;Coie, L;Andreu, V;Gergues, M;Khalil, H;Akil, H;Arcego, D;Meaney, M;Anacker, C;Samuels, B;Pintar, J;Morozova, I;Kalachikov, S;Hen, R;
| DOI: 10.1016/j.biopsych.2022.05.030
Background Selective serotonin reuptake inhibitors such as fluoxetine have a limited treatment efficacy. The mechanism by which some patients respond to fluoxetine while others do not remains poorly understood, limiting treatment effectiveness. We have found the opioid system to be involved in the responsiveness to fluoxetine treatment in a mouse model for anxiety- and depressive-like behavior. Methods We analyzed gene expression changes in the dentate gyrus of mice chronically treated with corticosterone and fluoxetine. After identifying a subset of genes of interest, we studied their expression patterns in relation to treatment responsiveness. We further characterized their expression through in situ hybridization and the analysis of a single-cell RNA-Seq data set. Finally, we behaviorally tested mu and delta opioid receptor knockout mice in the Novelty Suppressed Feeding test and the Forced Swim Test after chronic corticosterone and fluoxetine treatment. Results Chronic fluoxetine treatment upregulates proenkephalin expression in the dentate gyrus, and this upregulation is associated with treatment responsiveness. The expression of several of the most significantly upregulated genes, including proenkephalin, is localized to an anatomically and transcriptionally specialized subgroup of mature granule cells in the dentate gyrus. We have also found that the delta opioid receptor contributes to some, but not all, of the behavioral effects of fluoxetine. Conclusions These data indicate that the opioid system is involved in the antidepressant effects of fluoxetine, and this effect may be mediated through the upregulation of proenkephalin in a subpopulation of mature granule cells.
The Journal of neuroscience : the official journal of the Society for Neuroscience
Fudge, JL;Kelly, EA;Hackett, TA;
PMID: 36280261 | DOI: 10.1523/JNEUROSCI.1453-22.2022
The central extended amygdala (CEA) and ventral pallidum (VP) are involved in diverse motivated behaviors based on rodent models. These structures are conserved, but expanded, in higher primates including human. Corticotropin releasing factor (CRF), a canonical 'stress molecule' associated with the CEA and VP circuitry across species, is dynamically regulated by stress and drugs of abuse and misuse. CRF's effects on circuits critically depend on its colocation with primary 'fast' transmitters, making this crucial for understanding circuit effects. We surveyed the distribution and colocalization of CRF-, VGluT2- (vesicular glutamate transporter 2) and VGAT- (vesicular GABA transporter) mRNA in specific subregions of the CEA and VP in young male monkeys. Although CRF-containing neurons were clustered in the lateral central bed nucleus (BSTLcn), the majority were broadly dispersed throughout other CEA subregions, and the VP. CRF/VGAT-only neurons were highest in the BSTLcn, lateral central amygdala nucleus (CeLcn), and medial central amygdala nucleus (CeM) (74%, 73%, and 85%, respectively). In contrast, lower percentages of CRF/VGAT only neurons populated the sublenticular extended amygdala (SLEAc), ventrolateral bed nucleus (BSTLP), and VP (53%, 54%, 17%, respectively), which had higher complements of CRF/VGAT/VGluT2 labeled neurons (33%, 29%, 67%, respectively). Thus, the majority of CRF-neurons at the 'poles' (BSTLcn and CeLcn/CeM) of the CEA are inhibitory, while the 'extended' BSTLP and SLEAc subregions, and neighboring VP, have a more complex profile with admixtures of 'multiplexed' excitatory CRF neurons. CRF's colocalization with its various fast transmitters is likely circuit-specific, and relevant for understanding CRF actions on specific target sites.SIGNIFICANCE STATEMENT:The central extended amygdala (CEA) and ventral pallidum (VP) regulate multiple motivated behaviors through differential downstream projections. The stress neuropeptide corticotropin releasing factor (CRF) is enriched in the CEA, and is thought to 'set the gain' through modulatory effects on co-expressed primary transmitters. Using protein and transcript assays in monkey, we found that CRF neurons are broadly and diffusely distributed in CEA and VP. CRF mRNA+ neurons colocalize with VGAT (GABA) and VGluT2 (glutamate) mRNAs in different proportions depending on subregion. CRF mRNA was also co-expressed in a subpopulation of VGAT/VGluT2 mRNA ('multiplexed') cells which were most prominent in the VP and 'pallidal'-like parts of the CEA. Heterogeneous CRF and fast transmitter co-expression across CEA/VP subregions implies circuit-specific effects.
López-Ferreras L, Eerola K, Mishra D, Shevchouk OT, Richard JE, Nilsson FH, Hayes MR, Skibicka KP.
PMID: - | DOI: 10.1016/j.molmet.2018.11.005
Objective
The supramammillary nucleus (SuM) is nestled between the lateral hypothalamus (LH) and the ventral tegmental area (VTA). This neuroanatomical position is consistent with a potential role of this nucleus to regulate ingestive and motivated behavior. Here neuroanatomical, molecular, and behavior approaches are utilized to determine whether SuM contributes to ingestive and food-motivated behavior control.
Methods
Through the application of anterograde and retrograde neural tract tracing with novel designer viral vectors, the current findings show that SuM neurons densely innervate the LH in a sex dimorphic fashion. Glucagon-like peptide-1 (GLP-1) is a clinically targeted neuro-intestinal hormone with a well-established role in regulating energy balance and reward behaviors. Here we determine that GLP-1 receptors (GLP-1R) are expressed throughout the SuM of both sexes, and also directly on SuM LH-projecting neurons and investigate the role of SuM GLP-1R in the regulation of ingestive and motivated behavior in male and female rats.
Results
SuM microinjections of the GLP-1 analogue, exendin-4, reduced ad libitum intake of chow, fat, or sugar solution in both male and female rats, while food-motivated behaviors, measured using the sucrose motivated operant conditioning test, was only reduced in male rats. These data contrasted with the results obtained from a neighboring structure well known for its role in motivation and reward, the VTA, where females displayed a more potent response to GLP-1R activation by exendin-4. In order to determine the physiological role of SuM GLP-1R signaling regulation of energy balance, we utilized an adeno-associated viral vector to site-specifically deliver shRNA for the GLP-1R to the SuM. Surprisingly, and in contrast to previous results for the two SuM neighboring sites, LH and VTA, SuM GLP-1R knockdown increased food seeking and adiposity in obese male rats without altering food intake, body weight or food motivation in lean or obese, female or male rats.
Conclusion
Taken together, these results indicate that SuM potently contributes to ingestive and motivated behavior control; an effect contingent on sex, diet/homeostatic energy balance state and behavior of interest. These data also extend the map of brain sites directly responsive to GLP-1 agonists, and highlight key differences in the role that GLP-1R play in interconnected and neighboring nuclei.
Gemberling M, Karra R, Dickson AL, Poss KD.
PMID: 25830562 | DOI: 10.7554/eLife.05871.
Heart regeneration is limited in adult mammals but occurs naturally in adult zebrafish through the activation of cardiomyocyte division. Several components of the cardiac injury microenvironment have been identified, yet no factor on its own is known to stimulate overt myocardial hyperplasia in a mature, uninjured animal. In this study, we find evidence that Neuregulin1 (Nrg1), previously shown to have mitogenic effects on mammalian cardiomyocytes, is sharply induced in perivascular cells after injury to the adult zebrafish heart. Inhibition of Erbb2, an Nrg1 co-receptor, disrupts cardiomyocyte proliferation in response to injury, whereas myocardial Nrg1 overexpression enhances this proliferation. In uninjured zebrafish, the reactivation of Nrg1 expression induces cardiomyocyte dedifferentiation, overt muscle hyperplasia, epicardial activation, increased vascularization, and causes cardiomegaly through persistent addition of wall myocardium. Our findings identify Nrg1 as a potent, induced mitogen for the endogenous adult heart regeneration program.
Nectow AR, Schneeberger M, Zhang H, Field BC, Renier N, Azevedo E, Patel B, Liang Y, Mitra S, Tessier-Lavigne M, Han MH, Friedman JM.
PMID: 28753423 | DOI: 10.1016/j.cell.2017.06.045
Hunger, driven by negative energy balance, elicits the search for and consumption of food. While this response is in part mediated by neurons in the hypothalamus, the role of specific cell types in other brain regions is less well defined. Here, we show that neurons in the dorsal raphe nucleus, expressing vesicular transporters for GABA or glutamate (hereafter, DRNVgat and DRNVGLUT3 neurons), are reciprocally activated by changes in energy balance and that modulating their activity has opposite effects on feeding-DRNVgat neurons increase, whereas DRNVGLUT3 neurons suppress, food intake. Furthermore, modulation of these neurons in obese (ob/ob) mice suppresses food intake and body weight and normalizes locomotor activity. Finally, using molecular profiling, we identify druggable targets in these neurons and show that local infusion of agonists for specific receptors on these neurons has potent effects on feeding. These data establish the DRN as an important node controlling energy balance. PAPERCLIP.
Engstr�m Ruud L Pereira MMA, de Solis AJ, Fenselau H Br�ning JC
PMID: 31974377 | DOI: 10.1038/s41467-020-14291-3
Activation of Agouti-Related Peptide (AgRP)-expressing neurons promotes feeding and insulin resistance. Here, we examine the contribution of neuropeptide Y (NPY)-dependent signaling to the diverse physiological consequences of activating AgRP neurons. NPY-deficient mice fail to rapidly increase food intake during the first hour of either chemo- or optogenetic activation of AgRP neurons, while the delayed increase in feeding is comparable between control and NPY-deficient mice. Acutely stimulating AgRP neurons fails to induce systemic insulin resistance in NPY-deficient mice, while increased locomotor activity upon AgRP neuron stimulation in the absence of food remains unaffected in these animals. Selective re-expression of NPY in AgRP neurons attenuates the reduced feeding response and reverses the protection from insulin resistance upon optogenetic activation of AgRP neurons in NPY-deficient mice. Collectively, these experiments reveal a pivotal role of NPY-dependent signaling in mediating the rapid feeding inducing effect and the acute glucose regulatory function governed by AgRP neurons
Brain Struct Funct. 2014 Nov 27.
de Kloet AD, Wang L, Ludin JA, Smith JA, Pioquinto DJ, Hiller H, Steckelings UM, Scheuer DA, Sumners C, Krause EG.
PMID: 25427952
Angiotensin-II acts at its type-1 receptor (AT1R) in the brain to regulate body fluid homeostasis, sympathetic outflow and blood pressure. However, the role of the angiotensin type-2 receptor (AT2R) in the neural control of these processes has received far less attention, largely because of limited ability to effectively localize these receptors at a cellular level in the brain. The present studies combine the use of a bacterial artificial chromosome transgenic AT2R-enhanced green fluorescent protein (eGFP) reporter mouse with recent advances in in situ hybridization (ISH) to circumvent this obstacle. Dual immunohistochemistry (IHC)/ISH studies conducted in AT2R-eGFP reporter mice found that eGFP and AT2R mRNA were highly co-localized within the brain. Qualitative analysis of eGFP immunoreactivity in the brain then revealed localization to neurons within nuclei that regulate blood pressure, metabolism, and fluid balance (e.g., NTS and median preoptic nucleus [MnPO]), as well as limbic and cortical areas known to impact stress responding and mood. Subsequently, dual IHC/ISH studies uncovered the phenotype of specific populations of AT2R-eGFP cells. For example, within the NTS, AT2R-eGFP neurons primarily express glutamic acid decarboxylase-1 (80.3 ± 2.8 %), while a smaller subset express vesicular glutamate transporter-2 (18.2 ± 2.9 %) or AT1R (8.7 ± 1.0 %). No co-localization was observed with tyrosine hydroxylase in the NTS. Although AT2R-eGFP neurons were not observed within the paraventricular nucleus (PVN) of the hypothalamus, eGFP immunoreactivity is localized to efferents terminating in the PVN and within GABAergic neurons surrounding this nucleus. These studies demonstrate that central AT2R are positioned to regulate blood pressure, metabolism, and stress responses.
Becker-Krail, D;Ketchesin, K;Burns, J;Zong, W;Hildebrand, M;DePoy, L;Vadnie, C;Tseng, G;Logan, R;Huang, Y;McClung, C;
| DOI: 10.1016/j.biopsych.2022.02.007
Background Substance use disorders (SUDs) are associated with disruptions in circadian rhythms. Both human and animal work has shown the integral role for circadian clocks in the modulation of reward behaviors. Interestingly, astrocytes have emerged as key regulators of circadian rhythmicity. However, no studies to date have identified the role of circadian astrocyte function in the nucleus accumbens (NAc), a hub for reward regulation, or determined the importance of these rhythms for reward-related behavior. Methods Using astrocyte-specific RNA-sequencing across time-of-day, we first characterized diurnal variation of the NAc astrocyte transcriptome. We then investigated the functional significance of this circadian regulation through viral-mediated disruption of molecular clock function in NAc astrocytes, followed by assessment of reward-related behaviors, metabolic-related molecular assays, and whole-cell electrophysiology in the NAc. Results Strikingly, ∼43% of the astrocyte transcriptome has a diurnal rhythm and key metabolic pathways were enriched among the top rhythmic genes. Moreover, mice with a viral-mediated loss of molecular clock function in NAc astrocytes show a significant increase in locomotor response to novelty, exploratory drive, operant food self-administration and motivation. At the molecular level, these animals also show disrupted metabolic gene expression, along with significant downregulation of both lactate and glutathione levels in the NAc. Importantly, loss of NAc astrocyte clock function also significantly altered glutamatergic signaling onto neighboring medium spiny neurons, alongside upregulated glutamate-related gene expression. Conclusions Taken together, these findings demonstrate a novel role for astrocyte circadian molecular clock function in the regulation of the NAc and reward-related behaviors.
Kobayashi H, Liu Q, Binns TC, Urrutia AA, Davidoff O, Kapitsinou PP, Pfaff AS, Olauson H, Wernerson A, Fogo AB, Fong GH, Gross KW, Haase VH.
PMID: 27088801 | DOI: 10.1172/JCI83551
Renal peritubular interstitial fibroblast-like cells are critical for adult erythropoiesis, as they are the main source of erythropoietin (EPO). Hypoxia-inducible factor 2 (HIF-2) controls EPO synthesis in the kidney and liver and is regulated by prolyl-4-hydroxylase domain (PHD) dioxygenases PHD1, PHD2, and PHD3, which function as cellular oxygen sensors. Renal interstitial cells with EPO-producing capacity are poorly characterized, and the role of the PHD/HIF-2 axis in renal EPO-producing cell (REPC) plasticity is unclear. Here we targeted the PHD/HIF-2/EPO axis in FOXD1 stroma-derived renal interstitial cells and examined the role of individual PHDs in REPC pool size regulation and renal EPO output. Renal interstitial cells with EPO-producing capacity were entirely derived from FOXD1-expressing stroma, and Phd2 inactivation alone induced renal Epo in a limited number of renal interstitial cells. EPO induction was submaximal, as hypoxia or pharmacologic PHD inhibition further increased the REPC fraction among Phd2-/- renal interstitial cells. Moreover, Phd1 and Phd3 were differentially expressed in renal interstitium, and heterozygous deficiency for Phd1 and Phd3 increased REPC numbers in Phd2-/- mice. We propose that FOXD1 lineage renal interstitial cells consist of distinct subpopulations that differ in their responsiveness to Phd2 inactivation and thus regulation of HIF-2 activity and EPO production under hypoxia or conditions of pharmacologic or genetic PHD inactivation.
Proceedings of the National Academy of Sciences of the United States of America
Dutta Banik, D;Martin, LJ;Tang, T;Soboloff, J;Tourtellotte, WG;Pierchala, BA;
PMID: 37216536 | DOI: 10.1073/pnas.2217595120
The sense of taste starts with activation of receptor cells in taste buds by chemical stimuli which then communicate this signal via innervating oral sensory neurons to the CNS. The cell bodies of oral sensory neurons reside in the geniculate ganglion (GG) and nodose/petrosal/jugular ganglion. The geniculate ganglion contains two main neuronal populations: BRN3A+ somatosensory neurons that innervate the pinna and PHOX2B+ sensory neurons that innervate the oral cavity. While much is known about the different taste bud cell subtypes, considerably less is known about the molecular identities of PHOX2B+ sensory subpopulations. In the GG, as many as 12 different subpopulations have been predicted from electrophysiological studies, while transcriptional identities exist for only 3 to 6. Importantly, the cell fate pathways that diversify PHOX2B+ oral sensory neurons into these subpopulations are unknown. The transcription factor EGR4 was identified as being highly expressed in GG neurons. EGR4 deletion causes GG oral sensory neurons to lose their expression of PHOX2B and other oral sensory genes and up-regulate BRN3A. This is followed by a loss of chemosensory innervation of taste buds, a loss of type II taste cells responsive to bitter, sweet, and umami stimuli, and a concomitant increase in type I glial-like taste bud cells. These deficits culminate in a loss of nerve responses to sweet and umami taste qualities. Taken together, we identify a critical role of EGR4 in cell fate specification and maintenance of subpopulations of GG neurons, which in turn maintain the appropriate sweet and umami taste receptor cells.
Frontiers in neuroscience
Liu, A;Cheng, Y;Huang, J;
PMID: 37214399 | DOI: 10.3389/fnins.2023.1178693
Mammals are frequently exposed to various environmental stimuli, and to determine whether to approach or avoid these stimuli, the brain must assign emotional valence to them. Therefore, it is crucial to investigate the neural circuitry mechanisms involved in the mammalian brain's processing of emotional valence. Although the central amygdala (CeA) and the ventral tegmental area (VTA) individually encode different or even opposing emotional valences, it is unclear whether there are common upstream input neurons that innervate and control both these regions, and it is interesting to know what emotional valences of these common upstream neurons. In this study, we identify three major brain regions containing neurons that project to both the CeA and the VTA, including the posterior bed nucleus of the stria terminalis (pBNST), the pedunculopontine tegmental nucleus (PPTg), and the anterior part of the basomedial amygdala (BMA). We discover that these neural populations encode distinct emotional valences. Activating neurons in the pBNST produces positive valence, enabling mice to overcome their innate avoidance behavior. Conversely, activating neurons in the PPTg produces negative valence and induces anxiety-like behaviors in mice. Neuronal activity in the BMA, on the other hand, does not influence valence processing. Thus, our study has discovered three neural populations that project to both the CeA and the VTA and has revealed the distinct emotional valences these populations encode. These results provide new insights into the neurological mechanisms involved in emotional regulation.