Yasuhiro Noda, Miruto Tanaka, Shinsuke Nakamura, Junko Ito,Akiyoshi Kakita, Hideaki Hara, and Masamitsu Shimazawa
PMID: PMC7053308 | DOI: 10.7150/ijms.39101
Amyotrophic lateral sclerosis (ALS) is a serious disease characterized by the degeneration of motor neurons resulting in muscle weakness and paralysis. The neuroendocrine polypeptide VGF is localized in the central nervous system and peripheral endocrine neurons and is cleaved into several polypeptides with multiple functions. Previous studies revealed that VGF was decreased in the cerebrospinal fluid of ALS model mice and sporadic ALS patients. However, it is unknown which cells supply VGF in the spinal cord and a detailed localization is lacking. In this study, we evaluated the VGF-producing cells and protein localization using in situ hybridization and immunostaining in the spinal cords of ALS and control patients. VGF mRNA was localized both in the dorsal and anterior horns of the spinal cords. Moreover, in the anterior horn, VGF mRNA co-localized with a neurofilament heavy chain, which is a motor neuron marker, and VGF mRNA-positive motor neurons were decreased in the spinal cords of ALS patients. We revealed that VGF protein level was decreased in the anterior horn of ALS patients; however, the expression level of VGF protein was not changed in the posterior horn or white matter. Furthermore, the expression level of VGF protein was conserved in ALS patients with long-term survival. These results reveal that VGF is mainly supplied by human motor neurons, and suggest that VGF expression changes may be involved in ALS pathology
Experimental eye research
Wang, L;Sun, M;Zhang, Q;Dang, S;Zhang, W;
PMID: 35240198 | DOI: 10.1016/j.exer.2022.109020
ADAMTS18 is an orphan member of the ADAMTS family of metalloproteinase. ADAMTS18 mutation has been linked to developmental eye disorders, such as retinal dystrophies and ectopia lentis. Here, we report a new function of ADAMTS18 in modulating the lacrimal gland (LG) branching morphogenesis, and an association with dry eye in mice. Adamts18 mRNA was found to be enriched in the epithelium of branching tips of embryonic (E) LG, but its expression was barely detectable after 2 weeks of birth. Histological analyses of E16.5-E17.5 LG showed that ADAMTS18 deficiency resulted in a significant reduction of epithelial branching in embryonic LG. In vitro culture of E15.5 LG explants showed that the numbers of epithelial buds and branches in Adamts18 knockout (Adamts18-/-) LGs were significantly decreased when compared to those of wild type (Adamts18+/+) LGs after 0 h, 24 h, and 48 h of culture. Increased fibronectin deposition was detected in LG mesenchyme of E16.5 Adamts18-/- mice. At 14 months of age, Adamts18-/- mice manifested multiple LG pathological changes, including acinar atrophy and irregular duct ectasis with periductal fibrosis. The tear volume was significantly decreased in Adamts18-/- mice at 4 months of age, which corresponds to early adulthood in humans.
ADAMTS18 regulates vaginal opening through influencing the fusion of Mullerian duct and apoptosis of vaginal epithelial cells in mice
Lin, X;Wang, C;Zhang, Q;Pan, YH;Dang, S;Zhang, W;
PMID: 34271244 | DOI: 10.1016/j.repbio.2021.100537
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin Motifs) enzymes are secreted metalloproteinases with major roles in development, morphogenesis, and tissue repair via the assembly and degradation of extracellular matrix (ECM). In this study, we investigated the role of ADAMTS18 in the development of the reproductive tract in female mice by phenotyping Adamts18 knockout (Adamts18-/-) mice. The results showed that Adamst18 mRNAs were abundantly expressed in vaginal epithelial cells and muscularis cells of the developing vagina. At the time of vaginal opening (5 weeks of age), about 41 % of Adamts18-/- females showed enlarged protrusions in the upper and middle parts of the vagina, reduced vaginal length, and simultaneously exhibited vaginal atresia. 6% Adamts18-/- females exhibited vaginal septum. Histological analyses revealed that the paired Mullerian ducts in ∼33 % female Adamts18-/- embryos failed to fuse at embryonic day 15.5 (E15.5) resulting in the formation of two vaginal cavities. Results of TUNEL assay and immunohistochemistry for caspase-3 showed that the number of apoptotic cells in the terminal portion of the vagina of 5-week-old Adamts18-/- females with vaginal atresia was significantly decreased. Adamts18-/- females also showed a significant decrease in serum estradiol E2 compared to age-matched Adamts18+/+ females. Results of qRT-PCR showed that the expression level of the anti-apoptosis gene Bcl-2 was significantly increased and that of the apoptosis-related gene Epha1 was decreased in the vagina of 5-week-old Adamts18-/- females. These results suggest that ADAMTS18 regulates vaginal opening through influencing the fusion of Mullerian ducts and apoptosis of vaginal cells in mice.
Neuroscience. 2018 Dec 21.
Zhu R, Pan YH, Sun L, Zhang T, Wang C, Ye S, Yang N, Lu T, Wisniewski T, Dang S, Zhang W.
PMID: 30579834 | DOI: 10.1016/j.neuroscience.2018.12.025
The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that modify extracellular matrix components and play crucial roles in development and numerous diseases. ADAMTS18 is a member of the ADAMTS family, and genome-wide association studies made an initial association of ADAMTS18 with white matter integrity in healthy people of 72-74 years old. However, the potential roles of ADAMTS18 in central nervous system remain unclear. In this study, we showed that Adamts18 mRNA is highly abundant in developing brains, especially in the cerebellum granular cell layer and the hippocampus dentate gyrus (DG) granular cell layer. Adamts18 knockout (KO) mice displayed higher dendritic branching complexity and spine density on hippocampal DG granular cells. Behavioral tests showed that Adamts18 KO mice had reduced levels of depression-like behaviors compared to their wild-type (WT) littermates. The increased neurite formation could be attributed in part to reduced phosphorylation levels of the collapsin response mediator protein-2 (CRMP2) due to activation of the laminin/PI3K/AKT/GSK-3β signaling pathway. Our findings revealed a critical role of ADAMTS18 in neuronal morphogenesis and emotional control in mice.
Adamts18 modulates the development of aortic arch and common carotid artery
Ye, S;Yang, N;Lu, T;Wu, T;Wang, L;Pan, Y;Cao, X;Yuan, X;Wisniewski, T;Dang, S;Zhang, W;
| DOI: 10.1016/j.isci.2021.102672
Members of the ADAMTS family have been implicated in various vascular diseases. However, their functional roles in early embryonic vascular development are unknown. In this study, we showed that Adamts18 is highly expressed at E11.5-E14.5 in cells surrounding the embryonic aortic arch (AOAR) and the common carotid artery (CCA) during branchial arch artery development in mice. Adamts18 deficiency was found to cause abnormal development of AOAR, CCA, and the 3rd and 4th branchial arch appendages, leading to hypoplastic carotid body, thymus, and variation of middle cerebral artery. Adamts18 was shown to affect the accumulation of extracellular matrix (ECM) components, in particular fibronectin (Fn), around AOAR and CCA. As a result of increased Fn accumulation, the Notch3 signaling pathway was activated to promote the differentiation of cranial neural crest cells (CNCCs) to vascular smooth muscle cells. These data indicate that Adamts18-mediated ECM homeostasis is crucial for the differentiation of CNCCs.