Mehta P, Kreeger L, Wylie DC, Pattadkal JJ, Lusignan T, Davis MJ, Turi GF, Li WK, Whitmire MP, Chen Y, Kajs BL, Seidemann E, Priebe NJ, Losonczy A, Zemelman BV.
PMID: 30840900 | DOI: 10.1016/j.celrep.2019.02.011
Viral vectors enable foreign proteins to be expressed in brains of non-genetic species, including non-human primates. However, viruses targeting specific neuron classes have proved elusive. Here we describe viral promoters and strategies for accessing GABAergic interneurons and their molecularly defined subsets in the rodent and primate. Using a set intersection approach, which relies on two co-active promoters, we can restrict heterologous protein expression to cortical and hippocampal somatostatin-positive and parvalbumin-positive interneurons. With an orthogonal set difference method, we can enrich for subclasses of neuropeptide-Y-positive GABAergic interneurons by effectively subtracting the expression pattern of one promoter from that of another. These methods harness the complexity of gene expression patterns in the brain and significantly expand the number of genetically tractable neuron classes across mammals.
Weber F, Hoang Do JP, Chung S, Beier KT, Bikov M, Saffari Doost M, Dan Y.
PMID: 29367602 | DOI: 10.1038/s41467-017-02765-w
Mammalian sleep consists of distinct rapid eye movement (REM) and non-REM (NREM) states. The midbrain region ventrolateral periaqueductal gray (vlPAG) is known to be important for gating REM sleep, but the underlying neuronal mechanism is not well understood. Here, we show that activating vlPAG GABAergic neurons in mice suppresses the initiation and maintenance of REM sleep while consolidating NREM sleep, partly through their projection to the dorsolateral pons. Cell-type-specific recording and calcium imaging reveal that most vlPAG GABAergic neurons are strongly suppressed at REM sleep onset and activated at its termination. In addition to the rapid changes at brain state transitions, their activity decreases gradually between REM sleep and is reset by each REM episode in a duration-dependent manner, mirroring the accumulation and dissipation of REM sleep pressure. Thus, vlPAG GABAergic neurons powerfully gate REM sleep, and their firing rate modulation may contribute to the ultradian rhythm of REM/NREM alternation.
Kouvaros, S;Bizup, B;Solis, O;Kumar, M;Ventriglia, E;Curry, FP;Michaelides, M;Tzounopoulos, T;
PMID: 37294760 | DOI: 10.1126/sciadv.adf3525
Synaptic zinc is a neuromodulator that shapes synaptic transmission and sensory processing. The maintenance of synaptic zinc is dependent on the vesicular zinc transporter, ZnT3. Hence, the ZnT3 knockout mouse has been a key tool for studying the mechanisms and functions of synaptic zinc. However, the use of this constitutive knockout mouse has notable limitations, including developmental, compensatory, and brain and cell type specificity issues. To overcome these limitations, we developed and characterized a dual recombinase transgenic mouse, which combines the Cre and Dre recombinase systems. This mouse allows for tamoxifen-inducible Cre-dependent expression of exogenous genes or knockout of floxed genes in ZnT3-expressing neurons and DreO-dependent region and cell type-specific conditional ZnT3 knockout in adult mice. Using this system, we reveal a neuromodulatory mechanism whereby zinc release from thalamic neurons modulates N-methyl-d-aspartate receptor activity in layer 5 pyramidal tract neurons, unmasking previously unknown features of cortical neuromodulation.
Schroeder, A;Pardi, MB;Keijser, J;Dalmay, T;Groisman, AI;Schuman, EM;Sprekeler, H;Letzkus, JJ;
PMID: 36610397 | DOI: 10.1016/j.neuron.2022.12.010
Top-down projections convey a family of signals encoding previous experiences and current aims to the sensory neocortex, where they converge with external bottom-up information to enable perception and memory. Whereas top-down control has been attributed to excitatory pathways, the existence, connectivity, and information content of inhibitory top-down projections remain elusive. Here, we combine synaptic two-photon calcium imaging, circuit mapping, cortex-dependent learning, and chemogenetics in mice to identify GABAergic afferents from the subthalamic zona incerta as a major source of top-down input to the neocortex. Incertocortical transmission undergoes robust plasticity during learning that improves information transfer and mediates behavioral memory. Unlike excitatory pathways, incertocortical afferents form a disinhibitory circuit that encodes learned top-down relevance in a bidirectional manner where the rapid appearance of negative responses serves as the main driver of changes in stimulus representation. Our results therefore reveal the distinctive contribution of long-range (dis)inhibitory afferents to the computational flexibility of neocortical circuits.
Dietschi, Q;Tuberosa, J;Fodoulian, L;Boillat, M;Kan, C;Codourey, J;Pauli, V;Feinstein, P;Carleton, A;Rodriguez, I;
PMID: 36383665 | DOI: 10.1126/sciadv.abn7450
Rodents perceive pheromones via vomeronasal receptors encoded by highly evolutionarily dynamic Vr and Fpr gene superfamilies. We report here that high numbers of V1r pseudogenes are scattered in mammalian genomes, contrasting with the clustered organization of functional V1r and Fpr genes. We also found that V1r pseudogenes are more likely to be expressed when located in a functional V1r gene cluster than when isolated. To explore the potential regulatory role played by the association of functional vomeronasal receptor genes with their clusters, we dissociated the mouse Fpr-rs3 from its native cluster via transgenesis. Singular and specific transgenic Fpr-rs3 transcription was observed in young vomeronasal neurons but was only transient. Our study of natural and artificial dispersed gene duplications uncovers the existence of transcription-stabilizing elements not coupled to vomeronasal gene units but rather associated with vomeronasal gene clusters and thus explains the evolutionary conserved clustered organization of functional vomeronasal genes.
Coverdell, TC;Abraham-Fan, RJ;Wu, C;Abbott, SBG;Campbell, JN;
PMID: 35705034 | DOI: 10.1016/j.celrep.2022.110962
Motor control of the striated esophagus originates in the nucleus ambiguus (nAmb), a vagal motor nucleus that also contains upper airway motor neurons and parasympathetic preganglionic neurons for the heart and lungs. We disambiguate nAmb neurons based on their genome-wide expression profiles, efferent circuitry, and ability to control esophageal muscles. Our single-cell RNA sequencing analysis predicts three molecularly distinct nAmb neuron subtypes and annotates them by subtype-specific marker genes: Crhr2, Vipr2, and Adcyap1. Mapping the axon projections of the nAmb neuron subtypes reveals that Crhr2nAmb neurons innervate the esophagus, raising the possibility that they control esophageal muscle function. Accordingly, focal optogenetic stimulation of cholinergic Crhr2+ fibers in the esophagus results in contractions. Activating Crhr2nAmb neurons has no effect on heart rate, a key parasympathetic function of the nAmb, whereas activating all of the nAmb neurons robustly suppresses heart rate. Together, these results reveal a genetically defined circuit for motor control of the esophagus.
Coordination of endothelial cell positioning and fate specification by the epicardium
Quijada, P;Trembley, MA;Misra, A;Myers, JA;Baker, CD;Pérez-Hernández, M;Myers, JR;Dirkx, RA;Cohen, ED;Delmar, M;Ashton, JM;Small, EM;
PMID: 34230480 | DOI: 10.1038/s41467-021-24414-z
The organization of an integrated coronary vasculature requires the specification of immature endothelial cells (ECs) into arterial and venous fates based on their localization within the heart. It remains unclear how spatial information controls EC identity and behavior. Here we use single-cell RNA sequencing at key developmental timepoints to interrogate cellular contributions to coronary vessel patterning and maturation. We perform transcriptional profiling to define a heterogenous population of epicardium-derived cells (EPDCs) that express unique chemokine signatures. We identify a population of Slit2+ EPDCs that emerge following epithelial-to-mesenchymal transition (EMT), which we term vascular guidepost cells. We show that the expression of guidepost-derived chemokines such as Slit2 are induced in epicardial cells undergoing EMT, while mesothelium-derived chemokines are silenced. We demonstrate that epicardium-specific deletion of myocardin-related transcription factors in mouse embryos disrupts the expression of key guidance cues and alters EPDC-EC signaling, leading to the persistence of an immature angiogenic EC identity and inappropriate accumulation of ECs on the epicardial surface. Our study suggests that EC pathfinding and fate specification is controlled by a common mechanism and guided by paracrine signaling from EPDCs linking epicardial EMT to EC localization and fate specification in the developing heart.
Ventral pallidum DRD3 potentiates a pallido-habenular circuit driving accumbal dopamine release and cocaine seeking
Pribiag, H;Shin, S;Wang, EH;Sun, F;Datta, P;Okamoto, A;Guss, H;Jain, A;Wang, XY;De Freitas, B;Honma, P;Pate, S;Lilascharoen, V;Li, Y;Lim, BK;
PMID: 34048697 | DOI: 10.1016/j.neuron.2021.05.002
Drugs of abuse induce persistent remodeling of reward circuit function, a process thought to underlie the emergence of drug craving and relapse to drug use. However, how circuit-specific, drug-induced molecular and cellular plasticity can have distributed effects on the mesolimbic dopamine reward system to facilitate relapse to drug use is not fully elucidated. Here, we demonstrate that dopamine receptor D3 (DRD3)-dependent plasticity in the ventral pallidum (VP) drives potentiation of dopamine release in the nucleus accumbens during relapse to cocaine seeking after abstinence. We show that two distinct VP DRD3+ neuronal populations projecting to either the lateral habenula (LHb) or the ventral tegmental area (VTA) display different patterns of activity during drug seeking following abstinence from cocaine self-administration and that selective suppression of elevated activity or DRD3 signaling in the LHb-projecting population reduces drug seeking. Together, our results uncover how circuit-specific DRD3-mediated plasticity contributes to the process of drug relapse.
Flexible scaling and persistence of social vocal communication
Chen, J;Markowitz, JE;Lilascharoen, V;Taylor, S;Sheurpukdi, P;Keller, JA;Jensen, JR;Lim, BK;Datta, SR;Stowers, L;
PMID: 33790464 | DOI: 10.1038/s41586-021-03403-8
Innate vocal sounds such as laughing, screaming or crying convey one's feelings to others. In many species, including humans, scaling the amplitude and duration of vocalizations is essential for effective social communication1-3. In mice, female scent triggers male mice to emit innate courtship ultrasonic vocalizations (USVs)4,5. However, whether mice flexibly scale their vocalizations and how neural circuits are structured to generate flexibility remain largely unknown. Here we identify mouse neurons from the lateral preoptic area (LPOA) that express oestrogen receptor 1 (LPOAESR1 neurons) and, when activated, elicit the complete repertoire of USV syllables emitted during natural courtship. Neural anatomy and functional data reveal a two-step, di-synaptic circuit motif in which primary long-range inhibitory LPOAESR1 neurons relieve a clamp of local periaqueductal grey (PAG) inhibition, enabling excitatory PAG USV-gating neurons to trigger vocalizations. We find that social context shapes a wide range of USV amplitudes and bout durations. This variability is absent when PAG neurons are stimulated directly; PAG-evoked vocalizations are time-locked to neural activity and stereotypically loud. By contrast, increasing the activity of LPOAESR1 neurons scales the amplitude of vocalizations, and delaying the recovery of the inhibition clamp prolongs USV bouts. Thus, the LPOA disinhibition motif contributes to flexible loudness and the duration and persistence of bouts, which are key aspects of effective vocal social communication.
Kaneko, K;Sato, Y;Uchino, E;Toriu, N;Shigeta, M;Kiyonari, H;Endo, S;Fukuma, S;Yanagita, M;
PMID: 35644281 | DOI: 10.1016/j.kint.2022.04.026
Erythropoietin (Epo) is produced by a subpopulation of resident fibroblasts in the healthy kidney. We have previously demonstrated that, during kidney fibrosis, kidney fibroblasts including Epo-producing cells transdifferentiate into myofibroblasts and lose their Epo-producing ability. However, it remains unclear whether Epo-producing cells survive and transform into myofibroblasts during fibrosis because previous studies did not specifically label Epo-producing cells in pathophysiological conditions. Here, we generated EpoCreERT2/+ mice, a novel mouse strain that enables labeling of Epo-producing cells at desired time points and examined the behaviors of Epo-producing cells under pathophysiological conditions. Lineage -labeled cells that were producing Epo when labeled were found to be a small subpopulation of fibroblasts located in the interstitium of the kidney, and their number increased during phlebotomy-induced anemia. Around half of lineage-labeled cells expressed Epo mRNA, and this percentage was maintained even 16 weeks after recombination, supporting the idea that a distinct subpopulation of cells with Epo-producing ability makes Epo repeatedly. During fibrosis caused by ureteral obstruction, EpoCreERT2/+ -labeled cells were found to transdifferentiate into myofibroblasts with concomitant loss of Epo-producing ability, and their numbers and the proportion among resident fibroblasts increased during fibrosis, indicating their high proliferative capacity. Finally, we confirmed that EpoCreERT2/+-labeled cells that lost their Epo-producing ability during fibrosis regained their ability after kidney repair due to relief of the ureteral obstruction. Thus, our analyses have revealed previously unappreciated characteristic behaviors of Epo-producing cells, which had not been clearly distinguished from those of resident fibroblasts.
Zhang Z, Zhong P, Hu F, Barger Z, Ren Y, Ding X, Li S, Weber F, Chung S, Palmiter RD, Dan Y.
PMID: 31031008 | DOI: 10.1016/j.cell.2019.03.041
The perioculomotor (pIII) region of the midbrain was postulated as a sleep-regulating center in the 1890s but largely neglected in subsequent studies. Using activity-dependent labeling and gene expression profiling, we identified pIII neurons that promote non-rapid eye movement (NREM) sleep. Optrode recording showed that pIII glutamatergic neurons expressing calcitonin gene-related peptide alpha (CALCA) are NREM-sleep active; optogenetic and chemogenetic activation/inactivation showed that they strongly promote NREM sleep. Within the pIII region, CALCA neurons form reciprocal connections with another population of glutamatergic neurons that express the peptide cholecystokinin (CCK). Activation of CCK neurons also promoted NREM sleep. Both CALCA and CCK neurons project rostrally to the preoptic hypothalamus, whereas CALCA neurons also project caudally to the posterior ventromedial medulla. Activation of each projection increased NREM sleep. Together, these findings point to the pIII region as an excitatory sleep center where different subsets of glutamatergic neurons promote NREM sleep through both local reciprocal connections and long-range projections.
Graham, K;Spruston, N;Bloss, EB;
PMID: 34686328 | DOI: 10.1016/j.celrep.2021.109837
The selection of goal-directed behaviors is supported by neural circuits located within the frontal cortex. Frontal cortical afferents arise from multiple brain areas, yet the cell-type-specific targeting of these inputs is unclear. Here, we use monosynaptic retrograde rabies mapping to examine the distribution of afferent neurons targeting distinct classes of local inhibitory interneurons and excitatory projection neurons in mouse infralimbic frontal cortex. Interneurons expressing parvalbumin, somatostatin, or vasoactive intestinal peptide receive a large proportion of inputs from the hippocampus, while interneurons expressing neuron-derived neurotrophic factor receive a large proportion of inputs from thalamic regions. A similar dichotomy is present among the four different excitatory projection neurons. These results show a prominent bias among long-range hippocampal and thalamic afferent systems in their targeting to specific sets of frontal cortical neurons. Moreover, they suggest the presence of two distinct local microcircuits that control how different inputs govern frontal cortical information processing.