The Journal of neuroscience : the official journal of the Society for Neuroscience
Fudge, JL;Kelly, EA;Hackett, TA;
PMID: 36280261 | DOI: 10.1523/JNEUROSCI.1453-22.2022
The central extended amygdala (CEA) and ventral pallidum (VP) are involved in diverse motivated behaviors based on rodent models. These structures are conserved, but expanded, in higher primates including human. Corticotropin releasing factor (CRF), a canonical 'stress molecule' associated with the CEA and VP circuitry across species, is dynamically regulated by stress and drugs of abuse and misuse. CRF's effects on circuits critically depend on its colocation with primary 'fast' transmitters, making this crucial for understanding circuit effects. We surveyed the distribution and colocalization of CRF-, VGluT2- (vesicular glutamate transporter 2) and VGAT- (vesicular GABA transporter) mRNA in specific subregions of the CEA and VP in young male monkeys. Although CRF-containing neurons were clustered in the lateral central bed nucleus (BSTLcn), the majority were broadly dispersed throughout other CEA subregions, and the VP. CRF/VGAT-only neurons were highest in the BSTLcn, lateral central amygdala nucleus (CeLcn), and medial central amygdala nucleus (CeM) (74%, 73%, and 85%, respectively). In contrast, lower percentages of CRF/VGAT only neurons populated the sublenticular extended amygdala (SLEAc), ventrolateral bed nucleus (BSTLP), and VP (53%, 54%, 17%, respectively), which had higher complements of CRF/VGAT/VGluT2 labeled neurons (33%, 29%, 67%, respectively). Thus, the majority of CRF-neurons at the 'poles' (BSTLcn and CeLcn/CeM) of the CEA are inhibitory, while the 'extended' BSTLP and SLEAc subregions, and neighboring VP, have a more complex profile with admixtures of 'multiplexed' excitatory CRF neurons. CRF's colocalization with its various fast transmitters is likely circuit-specific, and relevant for understanding CRF actions on specific target sites.SIGNIFICANCE STATEMENT:The central extended amygdala (CEA) and ventral pallidum (VP) regulate multiple motivated behaviors through differential downstream projections. The stress neuropeptide corticotropin releasing factor (CRF) is enriched in the CEA, and is thought to 'set the gain' through modulatory effects on co-expressed primary transmitters. Using protein and transcript assays in monkey, we found that CRF neurons are broadly and diffusely distributed in CEA and VP. CRF mRNA+ neurons colocalize with VGAT (GABA) and VGluT2 (glutamate) mRNAs in different proportions depending on subregion. CRF mRNA was also co-expressed in a subpopulation of VGAT/VGluT2 mRNA ('multiplexed') cells which were most prominent in the VP and 'pallidal'-like parts of the CEA. Heterogeneous CRF and fast transmitter co-expression across CEA/VP subregions implies circuit-specific effects.
Proc Natl Acad Sci U S A.
Shen H, Marino RAM, McDevitt RA, Bi GH, Chen K, Madeo G, Lee PT, Liang Y, De Biase LM, Su TP, Xi ZX, Bonci A.
PMID: 30442663 | DOI: 10.1073/pnas.1800886115
A subset of midbrain dopamine (DA) neurons express vesicular glutamate transporter 2 (VgluT2), which facilitates synaptic vesicle loading of glutamate. Recent studies indicate that such expression can modulate DA-dependent reward behaviors, but little is known about functional consequences of DA neuron VgluT2 expression in neurodegenerative diseases like Parkinson's disease (PD). Here, we report that selective deletion of VgluT2 in DA neurons in conditional VgluT2-KO (VgluT2-cKO) mice abolished glutamate release from DA neurons, reduced their expression of brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB), and exacerbated the pathological effects of exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Furthermore, viral rescue of VgluT2 expression in DA neurons of VglutT2-cKO mice restored BDNF/TrkB expression and attenuated MPTP-induced DA neuron loss and locomotor impairment. Together, these findings indicate that VgluT2 expression in DA neurons is neuroprotective. Genetic or environmental factors causing reduced expression or function of VgluT2 in DA neurons may place some individuals at increased risk for DA neuron degeneration. Therefore, maintaining physiological expression and function of VgluT2 in DA neurons may represent a valid molecular target for the development of preventive therapeutic interventions for PD.
Castro, RW;Lopes, MC;Settlage, RE;Valdez, G;
PMID: 37154159 | DOI: 10.1172/jci.insight.168448
Spinal motor neurons have been implicated in the loss of motor function that occurs with advancing age. However, the cellular and molecular mechanisms that impair the function of these neurons during aging remain unknown. Here, we show that motor neurons do not die in old female and male mice, rhesus monkeys, and humans. Instead, these neurons selectively and progressively shed excitatory synaptic inputs throughout the soma and dendritic arbor during aging. Thus, aged motor neurons contain a motor circuitry with a reduced ratio of excitatory to inhibitory synapses that may be responsible for the diminished ability to activate motor neurons to commence movements. An examination of the motor neuron translatome (ribosomal transcripts) in male and female mice reveals genes and molecular pathways with roles in glia-mediated synaptic pruning, inflammation, axonal regeneration, and oxidative stress that are upregulated in aged motor neurons. Some of these genes and pathways are also found altered in motor neurons affected with amyotrophic lateral sclerosis (ALS) and responding to axotomy, demonstrating that aged motor neurons are under significant stress. Our findings show mechanisms altered in aged motor neurons that could serve as therapeutic targets to preserve motor function during aging.
Proceedings of the National Academy of Sciences of the United States of America
Caligiuri, SPB;Howe, WM;Wills, L;Smith, ACW;Lei, Y;Bali, P;Heyer, MP;Moen, JK;Ables, JL;Elayouby, KS;Williams, M;Fillinger, C;Oketokoun, Z;Lehmann, VE;DiFeliceantonio, AG;Johnson, PM;Beaumont, K;Sebra, RP;Ibanez-Tallon, I;Kenny, PJ;
PMID: 36346845 | DOI: 10.1073/pnas.2209870119
Hedgehog-interacting protein (HHIP) sequesters Hedgehog ligands to repress Smoothened (SMO)-mediated recruitment of the GLI family of transcription factors. Allelic variation in HHIP confers risk of chronic obstructive pulmonary disease and other smoking-related lung diseases, but underlying mechanisms are unclear. Using single-cell and cell-type-specific translational profiling, we show that HHIP expression is highly enriched in medial habenula (MHb) neurons, particularly MHb cholinergic neurons that regulate aversive behavioral responses to nicotine. HHIP deficiency dysregulated the expression of genes involved in cholinergic signaling in the MHb and disrupted the function of nicotinic acetylcholine receptors (nAChRs) through a PTCH-1/cholesterol-dependent mechanism. Further, CRISPR/Cas9-mediated genomic cleavage of the <i>Hhip</i> gene in MHb neurons enhanced the motivational properties of nicotine in mice. These findings suggest that HHIP influences vulnerability to smoking-related lung diseases in part by regulating the actions of nicotine on habenular aversion circuits.
Downs, AM;Donsante, Y;Jinnah, HA;Hess, EJ;
PMID: 35314320 | DOI: 10.1016/j.nbd.2022.105699
Trihexyphenidyl (THP), a non-selective muscarinic receptor (mAChR) antagonist, is commonly used for the treatment of dystonia associated with TOR1A, otherwise known as DYT1 dystonia. A better understanding of the mechanism of action of THP is a critical step in the development of better therapeutics with fewer side effects. We previously found that THP normalizes the deficit in striatal dopamine (DA) release in a mouse model of TOR1A dystonia (Tor1a+/ΔE knockin (KI) mice), revealing a plausible mechanism of action for this compound, considering that abnormal DA neurotransmission is consistently associated with many forms of dystonia. However, the mAChR subtype(s) that mediate the rescue of striatal dopamine release remain unclear. In this study we used a combination of pharmacological challenges and cell-type specific mAChR conditional knockout mice of either sex to determine which mAChR subtypes mediate the DA release-enhancing effects of THP. We determined that THP acts in part at M4 mAChR on striatal cholinergic interneurons to enhance DA release in both Tor1a+/+ and Tor1a+/ΔE KI mice. Further, we found that the subtype selective M4 antagonist VU6021625 recapitulates the effects of THP. These data implicate a principal role for M4 mAChR located on striatal cholinergic interneurons in the mechanism of action of THP and suggest that subtype selective M4 mAChR antagonists may be effective therapeutics with fewer side effects than THP for the treatment of TOR1A dystonia.
Yan, JJ;Ding, XJ;He, T;Chen, AX;Zhang, W;Yu, ZX;Cheng, XY;Wei, CY;Hu, QD;Liu, XY;Zhang, YL;He, M;Xie, ZY;Zha, X;Xu, C;Cao, P;Li, H;Xu, XH;
PMID: 36463200 | DOI: 10.1038/s41467-022-35211-7
Behavioral observations suggest a connection between anxiety and predator defense, but the underlying neural mechanisms remain unclear. Here we examine the role of the anterior hypothalamic nucleus (AHN), a node in the predator defense network, in anxiety-like behaviors. By in vivo recordings in male mice, we find that activity of AHN GABAergic (AHNVgat+) neurons shows individually stable increases when animals approach unfamiliar objects in an open field (OF) or when they explore the open-arm of an elevated plus-maze (EPM). Moreover, object-evoked AHN activity overlap with predator cue responses and correlate with the object and open-arm avoidance. Crucially, exploration-triggered optogenetic inhibition of AHNVgat+ neurons reduces object and open-arm avoidance. Furthermore, retrograde viral tracing identifies the ventral subiculum (vSub) of the hippocampal formation as a significant input to AHNVgat+ neurons in driving avoidance behaviors in anxiogenic situations. Thus, convergent activation of AHNVgat+ neurons serves as a shared mechanism between anxiety and predator defense to promote behavioral avoidance.
Ilanges, A;Shiao, R;Shaked, J;Luo, JD;Yu, X;Friedman, JM;
PMID: 36071158 | DOI: 10.1038/s41586-022-05161-7
Infections induce a set of pleiotropic responses in animals, including anorexia, adipsia, lethargy and changes in temperature, collectively termed sickness behaviours1. Although these responses have been shown to be adaptive, the underlying neural mechanisms have not been elucidated2-4. Here we use of a set of unbiased methodologies to show that a specific subpopulation of neurons in the brainstem can control the diverse responses to a bacterial endotoxin (lipopolysaccharide (LPS)) that potently induces sickness behaviour. Whole-brain activity mapping revealed that subsets of neurons in the nucleus of the solitary tract (NTS) and the area postrema (AP) acutely express FOS after LPS treatment, and we found that subsequent reactivation of these specific neurons in FOS2A-iCreERT2 (also known as TRAP2) mice replicates the behavioural and thermal component of sickness. In addition, inhibition of LPS-activated neurons diminished all of the behavioural responses to LPS. Single-nucleus RNA sequencing of the NTS-AP was used to identify LPS-activated neural populations, and we found that activation of ADCYAP1+ neurons in the NTS-AP fully recapitulates the responses elicited by LPS. Furthermore, inhibition of these neurons significantly diminished the anorexia, adipsia and locomotor cessation seen after LPS injection. Together these studies map the pleiotropic effects of LPS to a neural population that is both necessary and sufficient for canonical elements of the sickness response, thus establishing a critical link between the brain and the response to infection.
Brain Struct Funct. 2014 Nov 27.
de Kloet AD, Wang L, Ludin JA, Smith JA, Pioquinto DJ, Hiller H, Steckelings UM, Scheuer DA, Sumners C, Krause EG.
PMID: 25427952
Angiotensin-II acts at its type-1 receptor (AT1R) in the brain to regulate body fluid homeostasis, sympathetic outflow and blood pressure. However, the role of the angiotensin type-2 receptor (AT2R) in the neural control of these processes has received far less attention, largely because of limited ability to effectively localize these receptors at a cellular level in the brain. The present studies combine the use of a bacterial artificial chromosome transgenic AT2R-enhanced green fluorescent protein (eGFP) reporter mouse with recent advances in in situ hybridization (ISH) to circumvent this obstacle. Dual immunohistochemistry (IHC)/ISH studies conducted in AT2R-eGFP reporter mice found that eGFP and AT2R mRNA were highly co-localized within the brain. Qualitative analysis of eGFP immunoreactivity in the brain then revealed localization to neurons within nuclei that regulate blood pressure, metabolism, and fluid balance (e.g., NTS and median preoptic nucleus [MnPO]), as well as limbic and cortical areas known to impact stress responding and mood. Subsequently, dual IHC/ISH studies uncovered the phenotype of specific populations of AT2R-eGFP cells. For example, within the NTS, AT2R-eGFP neurons primarily express glutamic acid decarboxylase-1 (80.3 ± 2.8 %), while a smaller subset express vesicular glutamate transporter-2 (18.2 ± 2.9 %) or AT1R (8.7 ± 1.0 %). No co-localization was observed with tyrosine hydroxylase in the NTS. Although AT2R-eGFP neurons were not observed within the paraventricular nucleus (PVN) of the hypothalamus, eGFP immunoreactivity is localized to efferents terminating in the PVN and within GABAergic neurons surrounding this nucleus. These studies demonstrate that central AT2R are positioned to regulate blood pressure, metabolism, and stress responses.
Sun, L;Zhu, M;Wang, M;Hao, Y;Hao, Y;Jing, X;Yu, H;Shi, Y;Zhang, X;Wang, S;Yuan, F;Yuan, XS;
PMID: 37348822 | DOI: 10.1016/j.brainresbull.2023.110693
The nucleus tractus solitarii (NTS) is the primary central station that integrates visceral afferent information and regulates respiratory, gastrointestinal, cardiovascular, and other physiological functions. Leptin receptor b (LepRb)-expressing neurons of the NTS (NTSLepRb neurons) are implicated in central respiration regulation, respiratory facilitation, and respiratory drive enhancement. Furthermore, LepRb dysfunction is involved in obesity, insulin resistance, and sleep-disordered breathing. However, the monosynaptic inputs and outputs of NTSLepRb neurons in whole-brain mapping remain to be elucidated. Therefore, the exploration of its whole-brain connection system may provide strong support for comprehensively understanding the physiological and pathological functions of NTSLepRb neurons. In the present study, we used a cell type-specific, modified rabies virus and adeno-associated virus with the Cre-loxp system to map monosynaptic inputs and outputs of NTSLepRb neurons in LepRb-Cre mice. The results showed that NTSLepRb neurons received inputs from 48 nuclei in the whole brain from five brain regions, including especially the medulla. We found that NTSLepRb neurons received inputs from nuclei associated with respiration, such as the pre-Bötzinger complex, ambiguus nucleus, and parabrachial nucleus. Interestingly, some brain areas related to cardiovascular regulation-i.e., the ventrolateral periaqueductal gray and locus coeruleus-also sent a small number of inputs to NTSLepRb neurons. In addition, anterograde tracing results demonstrated that NTSLepRb neurons sent efferent projections to 15 nuclei, including the dorsomedial hypothalamic nucleus and arcuate hypothalamic nucleus, which are involved in regulation of energy metabolism and feeding behaviors. Quantitative statistical analysis revealed that the inputs of the whole brain to NTSLepRb neurons were significantly greater than the outputs. Our study comprehensively revealed neuronal connections of NTSLepRb neurons in the whole brain and provided a neuroanatomical basis for further research on physiological and pathological functions of NTSLepRb neurons.
Xu J, Molinas AJR, Mukerjee S, Morgan DA, Rahmouni K, Zsombok A, Lazartigues E.
PMID: 31006330 | DOI: 10.1161/HYPERTENSIONAHA.119.12832
Chronic activation of the brain renin-angiotensin system contributes to the development of hypertension by altering autonomic balance. Beyond the essential role of Ang II (angiotensin II) type 1 receptors, ADAM17 (A disintegrin and metalloprotease 17) is also found to promote brain renin-angiotensin system overactivation. ADAM17 is robustly expressed in various cell types within the central nervous system. The aim of this study was to determine whether ADAM17 modulates presympathetic neuronal activity to promote autonomic dysregulation in salt-sensitive hypertension. To test our hypothesis, ADAM17 was selectively knocked down in glutamatergic neurons using Cre-loxP technology. In mice lacking ADAM17 in glutamatergic neurons, the blood pressure increase induced by deoxycorticosterone acetate-salt treatment was blunted. Deoxycorticosterone acetate-salt significantly elevated cardiac and vascular sympathetic drive in control mice, while such effects were reduced in mice with ADAM17 knockdown. This blunted sympathoexcitation was extended to the spleen, with a lesser activation of the peripheral immune system, translating into a sequestration of circulating T cells within this organ, compared with controls. Within the paraventricular nucleus, Ang II-induced activation of kidney-related presympathetic glutamatergic neurons was reduced in ADAM17 knockdown mice, with the majority of cells no longer responding to Ang II stimulation, confirming the supportive role of ADAM17 in increasing presympathetic neuronal activity. Overall, our data highlight the pivotal role of neuronal ADAM17 in regulating sympathetic activity and demonstrate that activation of ADAM17 in glutamatergic neurons leads to a selective increase of sympathetic output, but not vagal tone, to specific organs, ultimately contributing to dysautonomia and salt-sensitive hypertension.
Kroeger, D;Thundercliffe, J;Phung, A;De Luca, R;Geraci, C;Bragg, S;McCafferty, KJ;Bandaru, SS;Arrigoni, E;Scammell, TE;
PMID: 36170177 | DOI: 10.1093/sleep/zsac242
The pedunculopontine tegmental nucleus (PPT) is implicated in many brain functions, ranging from sleep/wake control and locomotion, to reward mechanisms and learning. The PPT contains cholinergic, GABAergic and glutamatergic neurons with extensive ascending and descending axonal projections. Glutamatergic PPT (PPT vGlut2) neurons are thought to promote wakefulness, but the mechanisms through which this occurs are unknown. In addition, some researchers propose that PPT vGlut2 neurons promote locomotion, yet even though the PPT is a target for deep brain stimulation in Parkinson's disease, the role of the PPT in locomotion is debated. We hypothesized that PPT vGluT2 neurons drive arousal and specific waking behaviors via certain projections and modulate locomotion via others.We mapped the axonal projections of PPT vGlut2 neurons using conditional anterograde tracing and then photostimulated PPT vGlut2 soma or their axon terminal fields across sleep/wake states and analyzed sleep/wake behavior, muscle activity, and locomotion in transgenic mice.We found that stimulation of PPT vGlut2 soma and their axon terminals rapidly triggered arousals from NREM sleep, especially with activation of terminals in the basal forebrain (BF) and lateral hypothalamus (LH). With photoactivation of PPT vGlut2 terminals in the BF and LH, this wakefulness was accompanied by locomotion and other active behaviors, but stimulation of PPT vGlut2 soma and terminals in the substantia nigra triggered only quiet wakefulness without locomotion.These findings demonstrate the importance of the PPT vGluT2 neurons in driving various aspects of arousal and show that heterogeneous brain nuclei, such as the PPT, can promote a variety of behaviors via distinct axonal projections.
VGLUT2 is a determinant of dopamine neuron resilience in a rotenone model of dopamine neurodegeneration
The Journal of neuroscience : the official journal of the Society for Neuroscience
Buck, SA;Miranda, BR;Logan, RW;Fish, KN;Greenamyre, JT;Freyberg, Z;
PMID: 33893220 | DOI: 10.1523/JNEUROSCI.2770-20.2021
Parkinson's disease (PD) is characterized by progressive dopamine (DA) neuron loss in the substantia nigra pars compacta (SNc). In contrast, DA neurons in the ventral tegmental area (VTA) are relatively protected from neurodegeneration, but the underlying mechanisms for this resilience remain poorly understood. Recent work suggests that expression of the vesicular glutamate transporter 2 (VGLUT2) selectively impacts midbrain DA neuron vulnerability. We investigated whether altered DA neuron VGLUT2 expression determines neuronal resilience in rats exposed to rotenone, a mitochondrial complex I inhibitor and toxicant model of PD. We discovered that VTA/SNc DA neurons that expressed VGLUT2 are more resilient to rotenone-induced DA neurodegeneration. Surprisingly, the density of neurons with detectable VGLUT2 expression in the VTA and SNc increases in response to rotenone. Furthermore, dopaminergic terminals within the nucleus accumbens, where the majority of VGLUT2-expressing DA neurons project, exhibit greater resilience compared to DA terminals in the caudate/putamen. More broadly, VGLUT2-expressing terminals are protected throughout the striatum from rotenone-induced degeneration. Together, our data demonstrate that a distinct subpopulation of VGLUT2-expressing DA neurons are relatively protected from rotenone neurotoxicity. Rotenone-induced upregulation of the glutamatergic machinery in VTA and SNc neurons and their projections may be part of a broader neuroprotective mechanism. These findings offer a putative new target for neuronal resilience that can be manipulated to prevent toxicant-induced DA neurodegeneration in PD.SIGNIFICANCE STATEMENT:Environmental exposures to pesticides contribute significantly to pathological processes that culminate in Parkinson's disease (PD). The pesticide rotenone has been used to generate a PD model that replicates key features of the illness including dopamine neurodegeneration. To date, longstanding questions remain: are there dopamine neuron subpopulations resilient to rotenone, and if so, what are the molecular determinants of this resilience? Here we show that the subpopulation of midbrain dopaminergic neurons that express the vesicular glutamate transporter 2 (VGLUT2) are more resilient to rotenone-induced neurodegeneration. Rotenone also upregulates VGLUT2 more broadly in the midbrain, suggesting VGLUT2 expression generally confers increased resilience to rotenone. VGLUT2 may therefore be a new target for boosting neuronal resilience to prevent toxicant-induced DA neurodegeneration in PD.