ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Invest Ophthalmol Vis Sci.
2020 Feb 07
Sun M, Wadehra M, Casero D, Lin MC, Aguirre B, Parikh S, Matynia A, Gordon L, Chu A
PMID: 32031575 | DOI: 10.1167/iovs.61.2.3
J Mol Histol.
2018 May 14
Tamma R, Annese T, Ruggieri S, Marzullo A, Nico B, Ribatti D.
PMID: 29761299 | DOI: 10.1007/s10735-018-9777-0
Gastric cancer is the fifth most common cancer and third leading cause of cancer-related death worldwide. Several studies on angiogenic blocking agents in gastric cancer revealing promising results by the use of monoclonal antibodies against VEGFA or its receptor VEGFR2 or against VEGFA activating pathway. The validation of biomarkers useful to better organize the clinical trials involving anti-angiogenic therapies is crucial. Molecular markers such as RNA are increasingly used for cancer diagnosis, prognosis, and therapy guidance as in the case of the targeted therapies concerning the inhibition of angiogenesis. The aim of this study is to set the conditions for evaluating the expression of VEGFA and VEGFR2 in gastric cancer specimens and in healthy gastric mucosa by the use of RNAscope, a novel RNA in situ hybridization (ISH) method that allows the visualization of a specific gene expression in individual cells. We found the increased expression of VEGFA in the tubular glands and VEGFR2 in the endothelium of gastric cancer samples mainly in the T2, T3 and T4 stages of tumor progression as compared to the healthy controls. These results obtained by the application of this highly sensitive method for oligonucleotide detection the role of angiogenesis in gastric cancer progression already highlighted by conventional immunohistochemical methods, and offer significant promise as a new platform for developing and implementing RNA-based molecular diagnostics also in the conditions in which immunohistochemistry is not applicable.
Mod Pathol.
2018 Sep 11
Caliò A, Brunelli M, Segala D, Pedron S, Doglioni C, Argani P, Martignoni G.
PMID: 30206412 | DOI: 10.1038/s41379-018-0128-1
Amplification of vascular endothelial growth factor A (VEGFA) has been recently reported in TFEB-amplified renal cell carcinomas regardless the level of TFEB amplification. We sought to determine VEGFA amplification by fluorescent in situ hybridization (FISH) and VEGFA mRNA expression by in situ hybridization (RNAscope 2.5) in a series of 10 renal cell carcinomas with TFEB gene alterations, either amplification and/or rearrangement (t(6;11) renal cell carcinoma). TFEB gene rearrangement was demonstrated in eight cases, whereas the remaining two cases showed a high level of TFEB (> 10 copies of fluorescent signals) gene amplification without evidence of rearrangement. Among the eight t(6;11) renal cell carcinomas (TFEB-rearranged cases), one case displayed a high level of TFEB gene amplification and two showed increased TFEB gene copy number (3-4 copies of fluorescent signals). Those three cases behaved aggressively. By FISH, VEGFA was amplified in all three cases with TFEB amplification and increased VEGFA gene copy number was observed in the two aggressive cases t(6;11) renal cell carcinomas with an overlapping increased number of TFEB fluorescent signals. Overall, VEGFA mRNA expression was observed in 8 of 10 cases (80%); of these 8 cases, 3 cases showed high-level TFEB amplification, one case showed TFEB rearrangement with increased TFEB gene copy number, whereas four showed TFEB gene rearrangement without increased copy number. In summary, VEGFA amplification/increased gene copy number and VEGFA mRNA expression occur in TFEB-amplified renal cell carcinoma, but also in a subset of t(6;11) renal cell carcinoma demonstrating aggressive behavior, and in unamplified conventional t(6;11) renal cell carcinoma suggesting VEGFA as potential therapeutic target in these neoplasms even in the absence of TFEB amplification. We finally propose that all the renal tumors showing morphological characteristics suggesting t(6;11) renal cell carcinoma and all unclassified renal cell carcinomas, either high grade or low grade, should immunohistochemically be evaluated for cathepsin K and/or Melan-A and if one of them is positive, tested for TFEB gene alteration and VEGFA gene amplification.
J Pathol.
2017 Apr 18
Ni C, Ma P, Qu L, Wu F, Hao J, Wang R, Lu Y, Yang W, Erben U, Qin Z.
PMID: 28418194 | DOI: 10.1002/path.4907
Angiostasis mediated by IFNγ is a key mechanism of anti-tumor immunity; however, the effect of IFNγ on host VEGFA-expressing cells during tumor progression is still elusive. Here, we developed transgenic mice with IFNγ receptor (IFNγR) expression under control of the Vegfa promoter (V-γR). In these mice, the IFNγ responsiveness of VEGFA -expressing cells led to a dramatic growth suppression of transplanted lung carcinoma cells. Surprisingly, increased mortality and tumor metastasis were observed in the tumor-bearing V-γR mice, in comparison to the control wild type and IFNγR-deficient mice. Further study showed that perivascular cells were VEGFA-expressing cells and potential IFNγ targets. In vivo, tumor vascular perfusion and pericyte association with blood vessels were massively disrupted in V-γR mice. In vitro, IFNγ inhibited TGF-β-signaling through upregulating SMAD7 and therefore, down-regulated N-cadherin expression in pericytes. Importantly, IFNγ neutralization in vivo using a monoclonal antibody reduced tumor metastasis. Together, the results suggest that IFNγR-mediated dissociation of perivascular cells from blood vessels contributes to the acceleration of tumor metastasis. Thus the inhibition of tumor growth via IFNγ-induced angiostasis might also accelerate tumor metastasis.
PLoS One
2019 Mar 14
Girolamo F, Errede M, Longo G, Annese T, Alias C, Ferrara G, Morando S, Trojano M, Kerlero de Rosbo N, Uccelli A and Virgintino D
PMID: 30870435 | DOI: 10.1371/journal.pone.0213508
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com