Dunlap MD, Howard N, Das S, Scott N, Ahmed M, Prince O, Rangel-Moreno J, Rosa BA, Martin J, Kaushal D, Kaplan G, Mitreva M, Kim KW, Randolph GJ, Khader SA.
PMID: 30115997 | DOI: 10.1038/s41385-018-0071-y
C-C motif chemokine receptor 2 (CCR2) is a major chemokine axis that recruits myeloid cells including monocytes and macrophages. Thus far, CCR2-/- mice have not been found to be susceptible to infection with Mycobacterium tuberculosis (Mtb). Here, using a prototype W-Beijing family lineage 2 Mtb strain, HN878, we show that CCR2-/- mice exhibit increased susceptibility to tuberculosis (TB). Following exposure to Mtb HN878, alveolar macrophages (AMs) are amongst the earliest cells infected. We show that AMs accumulate early in the airways following infection and express CCR2. During disease progression, CCR2-expressing AMs exit the airways and localize within the TB granulomas. RNA-sequencing of sorted airway and non-airway AMs from infected mice show distinct gene expression profiles, suggesting that upon exit from airways and localization within granulomas, AMs become classically activated. The absence of CCR2+ cells specifically at the time of AM egress from the airways resulted in enhanced susceptibility to Mtb infection. Furthermore, infection with an Mtb HN878 mutant lacking phenolic glycolipid (PGL) expression still resulted in increased susceptibility in CCR2-/- mice. Together, these data show a novel rolefor CCR2 in protective immunity against clinically relevant Mtb infections.
Frank AC, Ebersberger S, Fink AF, Weigert A, Schmid T, Ebersberger I, Syed SN, Brüne B.
PMID: 30850595 | DOI: 10.1038/s41467-019-08989-2
Tumor-immune cell interactions shape the immune cell phenotype, with microRNAs (miRs) being crucial components of this crosstalk. How they are transferred and how they affect their target landscape, especially in tumor-associated macrophages (TAMs), is largely unknown. Here we report that breast cancer cells have a high constitutive expression of miR-375, which is released as a non-exosome entity during apoptosis. Deep sequencing of the miRome pointed to enhanced accumulation of miR-375 in TAMs, facilitated by the uptake of tumor-derived miR-375 via CD36. In macrophages, miR-375 directly targets TNS3 and PXN to enhance macrophage migration and infiltration into tumor spheroids and in tumors of a xenograft mouse model. In tumor cells, miR-375 regulates CCL2 expression to increase recruitment of macrophages. Our study provides evidence for miR transfer from tumor cells to TAMs and identifies miR-375 as a crucial regulator of phagocyte infiltration and the subsequent development of a tumor-promoting microenvironment.
Palmer MV, Wiarda J, Kanipe C and Thacker TC
PMID: 30895908 | DOI: 10.1177/0300985819833454
Mycobacterium bovis is a serious zoonotic pathogen and the cause of tuberculosis in many mammalian species, most notably, cattle. The hallmark lesion of tuberculosis is the granuloma. It is within the developing granuloma where host and pathogen interact; therefore, it is critical to understand host-pathogen interactions at the granuloma level. Cytokines and chemokines drive cell recruitment, activity, and function and ultimately determine the success or failure of the host to control infection. In calves, early lesions (ie, 15 and 30 days) after experimental aerosol infection were examined microscopically using in situ hybridization and immunohistochemistry to demonstrate early infiltrates of CD68+ macrophages within alveoli and alveolar interstitium, as well as the presence of CD4, CD8, and gammadelta T cells. Unlike lesions at 15 days, lesions at 30 days after infection contained small foci of necrosis among infiltrates of macrophages, lymphocytes, neutrophils, and multinucleated giant cells and extracellular acid-fast bacilli within necrotic areas. At both time points, there was abundant expression of the chemokines CXCL9, MCP-1/CCL2, and the cytokine transforming growth factor (TGF)-beta. The proinflammatory cytokines tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta, as well as the anti-inflammatory cytokine IL-10, were expressed at moderate levels at both time points, while expression of IFN-gamma was limited. These findings document the early pulmonary lesions after M. bovis infection in calves and are in general agreement with the proposed pathogenesis of tuberculosis described in laboratory animal and nonhuman primate models of tuberculosis.
Single-nuclear transcriptomics reveals diversity of proximal tubule cell states in a dynamic response to acute kidney injury
Proceedings of the National Academy of Sciences of the United States of America
Gerhardt, LMS;Liu, J;Koppitch, K;Cippà, PE;McMahon, AP;
PMID: 34183416 | DOI: 10.1073/pnas.2026684118
Acute kidney injury (AKI), commonly caused by ischemia, sepsis, or nephrotoxic insult, is associated with increased mortality and a heightened risk of chronic kidney disease (CKD). AKI results in the dysfunction or death of proximal tubule cells (PTCs), triggering a poorly understood autologous cellular repair program. Defective repair associates with a long-term transition to CKD. We performed a mild-to-moderate ischemia-reperfusion injury (IRI) to model injury responses reflective of kidney injury in a variety of clinical settings, including kidney transplant surgery. Single-nucleus RNA sequencing of genetically labeled injured PTCs at 7-d ("early") and 28-d ("late") time points post-IRI identified specific gene and pathway activity in the injury-repair transition. In particular, we identified Vcam1 +/Ccl2 + PTCs at a late injury stage distinguished by marked activation of NF-κB-, TNF-, and AP-1-signaling pathways. This population of PTCs showed features of a senescence-associated secretory phenotype but did not exhibit G2/M cell cycle arrest, distinct from other reports of maladaptive PTCs following kidney injury. Fate-mapping experiments identified spatially and temporally distinct origins for these cells. At the cortico-medullary boundary (CMB), where injury initiates, the majority of Vcam1 +/Ccl2 + PTCs arose from early replicating PTCs. In contrast, in cortical regions, only a subset of Vcam1 +/Ccl2 + PTCs could be traced to early repairing cells, suggesting late-arising sites of secondary PTC injury. Together, these data indicate even moderate IRI is associated with a lasting injury, which spreads from the CMB to cortical regions. Remaining failed-repair PTCs are likely triggers for chronic disease progression.
Intra-articular injection of phospholipid-based lubricant reduces shear-responsive inflammatory genes in the superficial layer of cartilage post murine joint destabilisation
Osteoarthritis and Cartilage
Zhu, L;Miotla Zarebska, J;Batchelor, V;Lin, W;Goldberg, R;Klein, J;Vincent, T;
| DOI: 10.1016/j.joca.2021.02.239
Purpose: The synovial joint exhibits extraordinary biotribological properties allowing the articular cartilage layers to slide past each other at very low friction even under local pressures of up to 18 MPa (~180 atm). Articular cartilage is exquisitely mechanical sensitive. Compressive mechanical load contributes to articular cartilage homeostasis; however, overuse or destabilizing the joint increases surface shear stress, which promotes cartilage degradation. Our previous Results show that shear stress, induced by joint destabilization, regulates a number of inflammatory genes 6h post surgery, including Mmp3, Il1b, Arg1, Ccl2, and Il6. Immobilizing the joint by prolonged anesthesia or sciatic neurectomy abrogates the regulation of inflammatory genes and prevents development of OA. In this study, we use RNA Scope to identify which cells of the cartilage are activated by surface shear after joint destabilisation, and test whether this is modifiable by injection of a biocompatible phospholipid-based lubricant. Methods: Destabilization of the medial meniscus (DMM) or sham surgery was performed on the right knee of 10-week-old male C57BL/6 mice. 30 ml of lubricant (PMPC: poly(methacryloylphosphsphorylcholine)-functionalized lipid vesicles) or vehicle control (PBS) solution was injected in the joint two days before and at the time of surgery. Cartilage from naïve (no surgery) and DMM-operated knees of four mice per data point was collected by microdissection for bulk mRNA extraction. Expression levels of selected genes including shear-responsive genes Il1b and Mmp3 were tested by RT-PCR using TaqMan Low Density Arrays (TLDA) microfluidic cards. In addition, whole joints were collected and processed following the standard protocol for RNAscope (Advanced Cell Diagnostics). Coronal sections in the middle of the joints were sliced by a cryostat. Consecutive sections were used for Safranin O staining and RNAscope to identify anatomical tissues and detect the expression of genes of interest. Gene expression signals were collated from 11 stacks by confocal microscopy (Zeiss Confocal 880) focusing on the medial tibia cartilage, and were quantified by counting individual mRNA dots in the sham, DMM, vehicle and lubricant groups. Results: We observed the upregulation of injury-responsive genes Il1b, Mmp3, Ccl2, Adamts 4, Nos2, and Timp1 in the articular cartilage of DMM operated joints compared to Naïve (non-operated) animals. The injection of the lubricant in the joint significantly suppressed the expression of shear-responsive genes Il1b and Mmp3 after DMM, but did not influence the increase of other injury-induced inflammatory genes, such as Timp1, Adamts 4, Ccl2, Nos2. For RNAscope, focusing on Mmp3 expression, the number of Mmp3 positive cells increased two-fold in the DMM-vehicle group compared with the sham-vehicle group. Most of Mmp3 signal was expressed in the superficial region of the cartilage. DMM-PMPC groups showed a reduced number of Mmp3 positive cells compared with DMM-vehicle, with levels similar to sham-vehicle and sham-PMPC groups. Conclusions: Our data demonstrate that shear stress-induced inflammatory genes are regulated in the superficial layer of cartilage after joint destabilisation and can be suppressed by joint injection of a biocompatible engineered lubricant. As these lubricants have long retention times in the joint (data not presented), we believe that they may provide a potential novel therapeutic strategy for preventing the development of post-trauma OA. These studies are underway
He, S;Bhatt, R;Brown, C;Brown, EA;Buhr, DL;Chantranuvatana, K;Danaher, P;Dunaway, D;Garrison, RG;Geiss, G;Gregory, MT;Hoang, ML;Khafizov, R;Killingbeck, EE;Kim, D;Kim, TK;Kim, Y;Klock, A;Korukonda, M;Kutchma, A;Lewis, ZR;Liang, Y;Nelson, JS;Ong, GT;Perillo, EP;Phan, JC;Phan-Everson, T;Piazza, E;Rane, T;Reitz, Z;Rhodes, M;Rosenbloom, A;Ross, D;Sato, H;Wardhani, AW;Williams-Wietzikoski, CA;Wu, L;Beechem, JM;
PMID: 36203011 | DOI: 10.1038/s41587-022-01483-z
Resolving the spatial distribution of RNA and protein in tissues at subcellular resolution is a challenge in the field of spatial biology. We describe spatial molecular imaging, a system that measures RNAs and proteins in intact biological samples at subcellular resolution by performing multiple cycles of nucleic acid hybridization of fluorescent molecular barcodes. We demonstrate that spatial molecular imaging has high sensitivity (one or two copies per cell) and very low error rate (0.0092 false calls per cell) and background (~0.04 counts per cell). The imaging system generates three-dimensional, super-resolution localization of analytes at ~2 million cells per sample. Cell segmentation is morphology based using antibodies, compatible with formalin-fixed, paraffin-embedded samples. We measured multiomic data (980 RNAs and 108 proteins) at subcellular resolution in formalin-fixed, paraffin-embedded tissues (nonsmall cell lung and breast cancer) and identified >18 distinct cell types, ten unique tumor microenvironments and 100 pairwise ligand-receptor interactions. Data on >800,000 single cells and ~260 million transcripts can be accessed at http://nanostring.com/CosMx-dataset .
Vet Immunol Immunopathol.
Rusk RA, Palmer MV, Waters WR, McGill JL.
PMID: 29129226 | DOI: 10.1016/j.vetimm.2017.10.004
Bovine γδ T cells are amongst the first cells to accumulate at the site of Mycobacterium bovis infection; however, their role in the developing lesion remains unclear. We utilized transcriptomics analysis, in situ hybridization, and a macrophage/γδ T cell co-culture system to elucidate the role of γδ T cells in local immunity to M. bovis infection. Transcriptomics analysis revealed that γδ T cells upregulated expression of several novel, immune-associated genes in response to stimulation with M. bovis antigen. BCG-infected macrophage/γδ T cell co-cultures confirmed the results of our RNAseq analysis, and revealed that γδ T cells from M. bovis-infected animals had a significant impact on bacterial viability. Analysis of γδ T cells within late-stage M. bovis granulomas revealed significant expression of IFN-γ and CCL2, but not IL-10, IL-22, or IL-17. Our results suggest γδ T cells influence local immunity to M. bovis through cytokine secretion and direct effects on bacterial burden.
Non-productive angiogenesis disassembles Aß plaque-associated blood vessels
Alvarez-Vergara, MI;Rosales-Nieves, AE;March-Diaz, R;Rodriguez-Perinan, G;Lara-Ureña, N;Ortega-de San Luis, C;Sanchez-Garcia, MA;Martin-Bornez, M;Gómez-Gálvez, P;Vicente-Munuera, P;Fernandez-Gomez, B;Marchena, MA;Bullones-Bolanos, AS;Davila, JC;Gonzalez-Martinez, R;Trillo-Contreras, JL;Sanchez-Hidalgo, AC;Del Toro, R;Scholl, FG;Herrera, E;Trepel, M;Körbelin, J;Escudero, LM;Villadiego, J;Echevarria, M;de Castro, F;Gutierrez, A;Rabano, A;Vitorica, J;Pascual, A;
PMID: 34035282 | DOI: 10.1038/s41467-021-23337-z
The human Alzheimer's disease (AD) brain accumulates angiogenic markers but paradoxically, the cerebral microvasculature is reduced around Aß plaques. Here we demonstrate that angiogenesis is started near Aß plaques in both AD mouse models and human AD samples. However, endothelial cells express the molecular signature of non-productive angiogenesis (NPA) and accumulate, around Aß plaques, a tip cell marker and IB4 reactive vascular anomalies with reduced NOTCH activity. Notably, NPA induction by endothelial loss of presenilin, whose mutations cause familial AD and which activity has been shown to decrease with age, produced a similar vascular phenotype in the absence of Aß pathology. We also show that Aß plaque-associated NPA locally disassembles blood vessels, leaving behind vascular scars, and that microglial phagocytosis contributes to the local loss of endothelial cells. These results define the role of NPA and microglia in local blood vessel disassembly and highlight the vascular component of presenilin loss of function in AD.
Non-thermal plasma promotes hair growth by improving the inter-follicular macroenvironment
Kim, H;Choi, E;Choi, E;Kim, H;Kim, J;Cho, G;Kim, H;Na, S;Shin, J;Do, S;Park, B;
| DOI: 10.1039/d1ra04625j
Non-thermal plasma (NTP) is widely used in the disinfection and surface modification of biomaterials.
Xu, Q;Rydz, C;Nguyen Huu, VA;Rocha, L;Palomino La Torre, C;Lee, I;Cho, W;Jabari, M;Donello, J;Lyon, DC;Brooke, RT;Horvath, S;Weinreb, RN;Ju, WK;Foik, A;Skowronska-Krawczyk, D;
PMID: 36397653 | DOI: 10.1111/acel.13737
Aging, a universal process that affects all cells in an organism, is a major risk factor for a group of neuropathies called glaucoma, where elevated intraocular pressure is one of the known stresses affecting the tissue. Our understanding of molecular impact of aging on response to stress in retina is very limited; therefore, we developed a new mouse model to approach this question experimentally. Here we show that susceptibility to response to stress increases with age and is primed on chromatin level. We demonstrate that ocular hypertension activates a stress response that is similar to natural aging and involves activation of inflammation and senescence. We show that multiple instances of pressure elevation cause aging of young retina as measured on transcriptional and DNA methylation level and are accompanied by local histone modification changes. Our data show that repeated stress accelerates appearance of aging features in tissues and suggest chromatin modifications as the key molecular components of aging. Lastly, our work further emphasizes the importance of early diagnosis and prevention as well as age-specific management of age-related diseases, including glaucoma.
Bulstrode, H;Girdler, GC;Gracia, T;Aivazidis, A;Moutsopoulos, I;Young, AMH;Hancock, J;He, X;Ridley, K;Xu, Z;Stockley, JH;Finlay, J;Hallou, C;Fajardo, T;Fountain, DM;van Dongen, S;Joannides, A;Morris, R;Mair, R;Watts, C;Santarius, T;Price, SJ;Hutchinson, PJA;Hodson, EJ;Pollard, SM;Mohorianu, I;Barker, RA;Sweeney, TR;Bayraktar, O;Gergely, F;Rowitch, DH;
PMID: 36174572 | DOI: 10.1016/j.neuron.2022.09.002
Zika virus (ZIKV) can infect human developing brain (HDB) progenitors resulting in epidemic microcephaly, whereas analogous cellular tropism offers treatment potential for the adult brain cancer, glioblastoma (GBM). We compared productive ZIKV infection in HDB and GBM primary tissue explants that both contain SOX2+ neural progenitors. Strikingly, although the HDB proved uniformly vulnerable to ZIKV infection, GBM was more refractory, and this correlated with an innate immune expression signature. Indeed, GBM-derived CD11b+ microglia/macrophages were necessary and sufficient to protect progenitors against ZIKV infection in a non-cell autonomous manner. Using SOX2+ GBM cell lines, we found that CD11b+-conditioned medium containing type 1 interferon beta (IFNβ) promoted progenitor resistance to ZIKV, whereas inhibition of JAK1/2 signaling restored productive infection. Additionally, CD11b+ conditioned medium, and IFNβ treatment rendered HDB progenitor lines and explants refractory to ZIKV. These findings provide insight into neuroprotection for HDB progenitors as well as enhanced GBM oncolytic therapies.
Bernier-Latmani, J;Mauri, C;Marcone, R;Renevey, F;Durot, S;He, L;Vanlandewijck, M;Maclachlan, C;Davanture, S;Zamboni, N;Knott, GW;Luther, SA;Betsholtz, C;Delorenzi, M;Brisken, C;Petrova, TV;
PMID: 35810168 | DOI: 10.1038/s41467-022-31571-2
The small intestinal villus tip is the first point of contact for lumen-derived substances including nutrients and microbial products. Electron microscopy studies from the early 1970s uncovered unusual spatial organization of small intestinal villus tip blood vessels: their exterior, epithelial-facing side is fenestrated, while the side facing the villus stroma is non-fenestrated, covered by pericytes and harbors endothelial nuclei. Such organization optimizes the absorption process, however the molecular mechanisms maintaining this highly specialized structure remain unclear. Here we report that perivascular LGR5+ villus tip telocytes (VTTs) are necessary for maintenance of villus tip endothelial cell polarization and fenestration by sequestering VEGFA signaling. Mechanistically, unique VTT expression of the protease ADAMTS18 is necessary for VEGFA signaling sequestration through limiting fibronectin accumulation. Therefore, we propose a model in which LGR5+ ADAMTS18+ telocytes are necessary to maintain a "just-right" level and location of VEGFA signaling in intestinal villus blood vasculature to ensure on one hand the presence of sufficient endothelial fenestrae, while avoiding excessive leakiness of the vessels and destabilization of villus tip epithelial structures.