Distinct Cellular Profiles of Hif1a and Vegf mRNA Localization in Microglia, Astrocytes and Neurons during a Period of Vascular Maturation in the Auditory Brainstem of Neonate Rats
Chang, D;Brown, Q;Tsui, G;He, Y;Liu, J;Shi, L;Rodríguez-Contreras, A;
| DOI: 10.3390/brainsci11070944
Defining the relationship between vascular development and the expression of hypoxia-inducible factors (Hifs) and vascular endothelial growth factor (Vegf) in the auditory brainstem is important to understand how tissue hypoxia caused by oxygen shortage contributes to sensory deficits in neonates. In this study, we used histology, molecular labeling, confocal microscopy and 3D image processing methods to test the hypothesis that significant maturation of the vascular bed in the medial nucleus of the trapezoid body (MNTB) occurs during the postnatal period that precedes hearing onset. Isolectin-B4 histochemistry experiments suggested that the MNTB vasculature becomes more elaborate between P5 and P10. When combined with a cell proliferation marker and immunohistochemistry, we found that vascular growth coincides with a switch in the localization of proliferating cells to perivascular locations, and an increase in the density of microglia within the MNTB. Furthermore, microglia were identified as perivascular cells with proliferative activity during the period of vascular maturation. Lastly, combined in situ hybridization and immunohistochemistry experiments showed distinct profiles of Hif1a and Vegf mRNA localization in microglia, astrocytes and MNTB principal neurons. These results suggest that different cells of the neuro-glio-vascular unit are likely targets of hypoxic insult in the auditory brainstem of neonate rats.
Odontoblast death drives cell-rich zone-derived dental tissue regeneration
Zhao, L;Ito, S;Arai, A;Udagawa, N;Horibe, K;Hara, M;Nishida, D;Hosoya, A;Masuko, R;Okabe, K;Shin, M;Li, X;Matsuo, K;Abe, S;Matsunaga, S;Kobayashi, Y;Kagami, H;Mizoguchi, T;
PMID: 34020080 | DOI: 10.1016/j.bone.2021.116010
Severe dental tissue damage induces odontoblast death, after which dental pulp stem and progenitor cells (DPSCs) differentiate into odontoblast-like cells, contributing to reparative dentin. However, the damage-induced mechanism that triggers this regeneration process is still not clear. We aimed to understand the effect of odontoblast death without hard tissue damage on dental regeneration. Herein, using a Cre/LoxP-based strategy, we demonstrated that cell-rich zone (CZ)-localizing Nestin-GFP-positive and Nestin-GFP-negative cells proliferate and differentiate into odontoblast-like cells in response to odontoblast depletion. The regenerated odontoblast-like cells played a role in reparative dentin formation. RNA-sequencing analysis revealed that the expression of odontoblast differentiation- and activation-related genes was upregulated in the pulp in response to odontoblast depletion even without damage to dental tissue. In this regenerative process, the expression of type I parathyroid hormone receptor (PTH1R) increased in the odontoblast-depleted pulp, thereby boosting dentin formation. The levels of PTH1R and its downstream mediator, i.e., phosphorylated cyclic AMP response element-binding protein (Ser133) increased in the physically damaged pulp. Collectively, odontoblast death triggered the PTH1R cascade, which may represent a therapeutic target for inducing CZ-mediated dental regeneration.
Arid1a-Plagl1-Hh signaling is indispensable for differentiation-associated cell cycle arrest of tooth root progenitors
Du, J;Jing, J;Yuan, Y;Feng, J;Han, X;Chen, S;Li, X;Peng, W;Xu, J;Ho, TV;Jiang, X;Chai, Y;
PMID: 33826897 | DOI: 10.1016/j.celrep.2021.108964
Chromatin remodelers often show broad expression patterns in multiple cell types yet can elicit cell-specific effects in development and diseases. Arid1a binds DNA and regulates gene expression during tissue development and homeostasis. However, it is unclear how Arid1a achieves its functional specificity in regulating progenitor cells. Using the tooth root as a model, we show that loss of Arid1a impairs the differentiation-associated cell cycle arrest of tooth root progenitors through Hedgehog (Hh) signaling regulation, leading to shortened roots. Our data suggest that Plagl1, as a co-factor, endows Arid1a with its cell-type/spatial functional specificity. Furthermore, we show that loss of Arid1a leads to increased expression of Arid1b, which is also indispensable for odontoblast differentiation but is not involved in regulation of Hh signaling. This study expands our knowledge of the intricate interactions among chromatin remodelers, transcription factors, and signaling molecules during progenitor cell fate determination and lineage commitment.
Liang, T;Hu, Y;Zhang, H;Xu, Q;Smith, CE;Zhang, C;Kim, JW;Wang, SK;Saunders, TL;Lu, Y;Hu, JC;Simmer, JP;
PMID: 34667213 | DOI: 10.1038/s41598-021-00219-4
Non-syndromic inherited defects of tooth dentin are caused by two classes of dominant negative/gain-of-function mutations in dentin sialophosphoprotein (DSPP): 5' mutations affecting an N-terminal targeting sequence and 3' mutations that shift translation into the - 1 reading frame. DSPP defects cause an overlapping spectrum of phenotypes classified as dentin dysplasia type II and dentinogenesis imperfecta types II and III. Using CRISPR/Cas9, we generated a Dspp-1fs mouse model by introducing a FLAG-tag followed by a single nucleotide deletion that translated 493 extraneous amino acids before termination. Developing incisors and/or molars from this mouse and a DsppP19L mouse were characterized by morphological assessment, bSEM, nanohardness testing, histological analysis, in situ hybridization and immunohistochemistry. DsppP19L dentin contained dentinal tubules but grew slowly and was softer and less mineralized than the wild-type. DsppP19L incisor enamel was softer than normal, while molar enamel showed reduced rod/interrod definition. Dspp-1fs dentin formation was analogous to reparative dentin: it lacked dentinal tubules, contained cellular debris, and was significantly softer and thinner than Dspp+/+ and DsppP19L dentin. The Dspp-1fs incisor enamel appeared normal and was comparable to the wild-type in hardness. We conclude that 5' and 3' Dspp mutations cause dental malformations through different pathological mechanisms and can be regarded as distinct disorders.
Arid1a regulates cell cycle exit of transit-amplifying cells by inhibiting the Aurka-Cdk1 axis in mouse incisor
Development (Cambridge, England)
Du, J;Jing, J;Chen, S;Yuan, Y;Feng, J;Ho, TV;Sehgal, P;Xu, J;Jiang, X;Chai, Y;
PMID: 33766930 | DOI: 10.1242/dev.198838
Stem cells self-renew or give rise to transit-amplifying cells (TACs) that differentiate into specific functional cell types. The fate determination of stem cells to TACs and their transition to fully differentiated progeny is precisely regulated to maintain tissue homeostasis. Arid1a, a core component of the switch/sucrose nonfermentable complex, performs epigenetic regulation of stage- and tissue-specific genes that is indispensable for stem cell homeostasis and differentiation. However, the functional mechanism of Arid1a in the fate commitment of mesenchymal stem cells (MSCs) and their progeny is not clear. Using the continuously growing adult mouse incisor model, we show that Arid1a maintains tissue homeostasis through limiting proliferation, promoting cell cycle exit and differentiation of TACs by inhibiting the Aurka-Cdk1 axis. Loss of Arid1a overactivates the Aurka-Cdk1 axis, leading to expansion of the mitotic TAC population but compromising their differentiation ability. Furthermore, the defective homeostasis after loss of Arid1a ultimately leads to reduction of the MSC population. These findings reveal the functional significance of Arid1a in regulating the fate of TACs and their interaction with MSCs to maintain tissue homeostasis.