Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (60)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • (-) Remove V-nCoV2019-S filter V-nCoV2019-S (37)
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope 2.5 HD Red assay (13) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent Assay (12) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 LS Assay (10) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Brown Assay (5) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope (4) Apply RNAscope filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (4) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.0 Assay (2) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Fluorescent Multiplex Assay (2) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter

Research area

  • Infectious (32) Apply Infectious filter
  • Covid (30) Apply Covid filter
  • Inflammation (17) Apply Inflammation filter
  • Cancer (10) Apply Cancer filter
  • Immunotherapy (3) Apply Immunotherapy filter
  • Neuroscience (2) Apply Neuroscience filter
  • Covid-19 (1) Apply Covid-19 filter
  • Demodex mites (1) Apply Demodex mites filter
  • Eczema (1) Apply Eczema filter
  • Fibrosis (1) Apply Fibrosis filter
  • Infectious Disease (1) Apply Infectious Disease filter
  • Injury (1) Apply Injury filter
  • Innate Immunity (1) Apply Innate Immunity filter
  • Mucocutaneous Leishmaniasis (1) Apply Mucocutaneous Leishmaniasis filter
  • Other: Skin (1) Apply Other: Skin filter
  • Psoriasis (1) Apply Psoriasis filter
  • Regeneration (1) Apply Regeneration filter
  • Reproduction (1) Apply Reproduction filter
  • Skin (1) Apply Skin filter
  • Stem Cells (1) Apply Stem Cells filter

Category

  • Publications (60) Apply Publications filter
Host parameters and mode of infection influence outcome in SARS-CoV-2 infected hamsters

iScience

2021 Nov 01

Griffin, B;Warner, B;Chan, M;Valcourt, E;Tailor, N;Banadyga, L;Leung, A;He, S;Boese, A;Audet, J;Cao, W;Moffat, E;Garnett, L;Tierney, K;Tran, K;Albietz, A;Manguiat, K;Soule, G;Bello, A;Vendramelli, R;Lin, J;Deschambault, Y;Zhu, W;Wood, H;Mubareka, S;Safronetz, D;Strong, J;Embury-Hyatt, C;Kobasa, D;
| DOI: 10.1016/j.isci.2021.103530

The golden hamster model of SARS-CoV-2 infection recapitulates key characteristics of COVID-19. In this work we examined the influence of the route of exposure, sex, and age on SARS-CoV-2 pathogenesis in hamsters. We report that delivery of SARS-CoV-2 by a low versus high volume intranasal or intragastric route results in comparable viral titers in the lung and viral shedding. However, low-volume intranasal exposure results in milder weight loss while intragastric exposure leads to a diminished capacity to regain body weight. Male hamsters, and particularly older male hamsters, display an impaired capacity to recover from illness and delayed viral clearance. These factors were found to influence the nature of the host inflammatory cytokine response, but had a minimal effect on the quality and durability of the humoral immune response and susceptibility to re-infection. These data further elucidate key factors that impact pre-clinical challenge studies carried out in the hamster model of COVID-19.
A single intranasal or intramuscular immunization with chimpanzee adenovirus vectored SARS-CoV-2 vaccine protects against pneumonia in hamsters

Cell Reports

2021 Jun 01

Bricker, T;Darling, T;Hassan, A;Harastani, H;Soung, A;Jiang, X;Dai, Y;Zhao, H;Adams, L;Holtzman, M;Bailey, A;Case, J;Fremont, D;Klein, R;Diamond, M;Boon, A;
| DOI: 10.1016/j.celrep.2021.109400

The development of an effective vaccine against SARS-CoV-2, the etiologic agent of COVID-19, is a global priority. Here, we compared the protective capacity of intranasal and intramuscular delivery of a chimpanzee adenovirus-vectored vaccine encoding a pre-fusion stabilized spike protein (ChAd-SARS-CoV-2-S) in Golden Syrian hamsters. While immunization with ChAd-SARS-CoV-2-S induced robust spike protein specific antibodies capable of neutralizing the virus, antibody levels in serum were higher in hamsters vaccinated by an intranasal compared to intramuscular route. Accordingly, against challenge with SARS-CoV-2, ChAd-SARS-CoV-2-S immunized hamsters were protected against less weight loss and had reduced viral infection in nasal swabs and lungs, and reduced pathology and inflammatory gene expression in the lungs, compared to ChAd-Control immunized hamsters. Intranasal immunization with ChAd-SARS-CoV-2-S provided superior protection against SARS-CoV-2 infection and inflammation in the upper respiratory tract. These findings support intranasal administration of the ChAd-SARS-CoV-2-S candidate vaccine to prevent SARS-CoV-2 infection, disease, and possibly transmission.
Rapid endotheliitis and vascular damage characterize SARS-CoV-2 infection in a human lung-on-chip model

EMBO reports

2021 Apr 28

Thacker, VV;Sharma, K;Dhar, N;Mancini, GF;Sordet-Dessimoz, J;McKinney, JD;
PMID: 33908688 | DOI: 10.15252/embr.202152744

Severe cases of SARS-CoV-2 infection are characterized by hypercoagulopathies and systemic endotheliitis of the lung microvasculature. The dynamics of vascular damage, and whether it is a direct consequence of endothelial infection or an indirect consequence of an immune cell-mediated cytokine storm remain unknown. Using a vascularized lung-on-chip model, we find that infection of alveolar epithelial cells leads to limited apical release of virions, consistent with reports of monoculture infection. However, viral RNA and proteins are rapidly detected in underlying endothelial cells, which are themselves refractory to apical infection in monocultures. Although endothelial infection is unproductive, it leads to the formation of cell clusters with low CD31 expression, a progressive loss of barrier integrity and a pro-coagulatory microenvironment. Viral RNA persists in individual cells generating an inflammatory response, which is transient in epithelial cells but persistent in endothelial cells and typified by IL-6 secretion even in the absence of immune cells. Inhibition of IL-6 signalling with tocilizumab reduces but does not prevent loss of barrier integrity. SARS-CoV-2-mediated endothelial cell damage thus occurs independently of cytokine storm.
SARS-CoV-2 Infection Remodels the Phenotype and Promotes Angiogenesis of Primary Human Lung Endothelial Cells

Microorganisms

2021 Jul 03

Caccuri, F;Bugatti, A;Zani, A;De Palma, A;Di Silvestre, D;Manocha, E;Filippini, F;Messali, S;Chiodelli, P;Campisi, G;Fiorentini, S;Facchetti, F;Mauri, P;Caruso, A;
| DOI: 10.3390/microorganisms9071438

SARS-CoV-2-associated acute respiratory distress syndrome (ARDS) and acute lung injury are life-threatening manifestations of severe viral infection. The pathogenic mechanisms that lead to respiratory complications, such as endothelialitis, intussusceptive angiogenesis, and vascular leakage remain unclear. In this study, by using an immunofluorescence assay and in situ RNA-hybridization, we demonstrate the capability of SARS-CoV-2 to infect human primary lung microvascular endothelial cells (HL-mECs) in the absence of cytopathic effects and release of infectious particles. Preliminary data point to the role of integrins in SARS-CoV-2 entry into HL-mECs in the absence of detectable ACE2 expression. Following infection, HL-mECs were found to release a plethora of pro-inflammatory and pro-angiogenic molecules, as assessed by microarray analyses. This conditioned microenvironment stimulated HL-mECs to acquire an angiogenic phenotype. Proteome analysis confirmed a remodeling of SARS-CoV-2-infected HL-mECs to inflammatory and angiogenic responses and highlighted the expression of antiviral molecules as annexin A6 and MX1. These results support the hypothesis of a direct role of SARS-CoV-2-infected HL-mECs in sustaining vascular dysfunction during the early phases of infection. The construction of virus-host interactomes will be instrumental to identify potential therapeutic targets for COVID-19 aimed to inhibit HL-mEC-sustained inflammation and angiogenesis upon SARS-CoV-2 infection.
Abstract LB235: Characterizing tumor-infiltrated immune cells with spatial context using an integrated RNAscope-immunohistochemistry co-detection workflow in FFPE tissues

Tumor Biology

2021 Jul 01

Dikshit, A;Phatak, J;Hernandez, L;Doolittle, E;Murlidhar, V;Zhang, B;Ma, X;
| DOI: 10.1158/1538-7445.am2021-lb235

Complex tissues such as tumors are comprised of multiple cells types and extracellular matrix. These cells include heterogenous populations of immune cells that infiltrate the tumors. Understanding the composition of these immune infiltrates in the tumor microenvironment (TME) can provide key insights to guide therapeutic intervention and predict treatment response. Thorough understanding of complex tissue dynamics and immune cell characterization requires a multi-omics approach. Simultaneous detection of RNA and protein using in situ hybridization (ISH) and immunohistochemistry/immunofluorescence (IHC/IF) can reveal cellular sources of secreted proteins, identify specific cell types, and visualize the spatial organization of cells within the tissue. However, a sequential workflow of ISH followed by IHC/IF frequently yields suboptimal protein detection because the protease digestion step in the ISH protocol resulting in poor antibody signal. Here we demonstrate a newly developed integrated ISH/IHC workflow that can substantially improve RNA-protein co-detection, enabling the visualization and characterization of tumor immune infiltrates at single-cell resolution with spatial and morphological context. To characterize tumor-infiltrating immune cells in a tumor TMA (tumor microarray), we utilized the RNAscope Multiplex Fluorescence assay in combination with the RNA-Protein Co-detection Kit to detect multiple immune cell populations. Immune cells such as macrophages, T cells and NK cells were detected using specific antibodies against CD68, CD8, CD4 and CD56, respectively. Precise characterization of these immune cells was achieved by using probes against targets such as CCL5, IFNG, GNZB, IL-12, NCR1 etc. that not only help in identifying specific immune cells but also assist in determining their activation states. We identified subsets of T cells such as CD4+ regulatory T cells and CD8+ cytotoxic T lymphocytes. Additionally, we were able to determine the activation states of CD8+ T cells by visualizing the expression of IFNG and GZMB. Furthermore, infiltrating macrophages were identified by detecting the CD68 protein expression while the M1 and M2 subsets were differentiated by detecting the M2-specific target RNA for CD163. Similarly, NK cells were identified by detecting CD56 protein in combination with CCL5 and NCR1 RNA expression. Interestingly, the degree of infiltration of the different immune cell populations varied based on the tumor type. In conclusion, the new RNAscope-ISH-IHC co-detection workflow and reagents enable optimized simultaneous visualization of RNA and protein targets by enhancing the compatibility of antibodies - including many previously incompatible antibodies - with RNAscope. This new workflow provides a powerful new approach to identifying and characterizing tumor infiltrating populations of immune cells.
Variable levels of spike and ORF1ab RNA in post-mortem lung samples of SARS-CoV-2-positive subjects: comparison between ISH and RT-PCR

Virchows Archiv : an international journal of pathology

2022 Feb 01

Zito Marino, F;De Cristofaro, T;Varriale, M;Zannini, G;Ronchi, A;La Mantia, E;Campobasso, CP;De Micco, F;Mascolo, P;Municinò, M;Municinò, E;Vestini, F;Pinto, O;Moccia, M;De Stefano, N;Nappi, O;Sementa, C;Zotti, G;Pianese, L;Giordano, C;Franco, R;
PMID: 35103846 | DOI: 10.1007/s00428-021-03262-8

Post-mortem examination plays a pivotal role in understanding the pathobiology of the SARS-CoV-2; thus, the optimization of virus detection on the post-mortem formalin-fixed paraffin-embedded (FFPE) tissue is needed. Different techniques are available for the identification of the SARS-CoV-2, including reverse transcription polymerase chain reaction (RT-PCR), immunohistochemistry (IHC), in situ hybridization (ISH), and electron microscopy. The main goal of this study is to compare ISH versus RT-PCR to detect SARS-CoV-2 on post-mortem lung samples of positive deceased subjects. A total of 27 samples were analyzed by RT-PCR targeting different viral RNA sequences of SARS-CoV-2, including envelope (E), nucleocapsid (N), spike (S), and open reading frame (ORF1ab) genes and ISH targeting S and Orf1ab. All 27 cases showed the N gene amplification, 22 out of 27 the E gene amplification, 26 out of 27 the S gene amplification, and only 6 the ORF1ab gene amplification. The S ISH was positive only in 12 out of 26 cases positive by RT-PCR. The S ISH positive cases with strong and diffuse staining showed a correlation with low values of the number of the amplification cycles by S RT-PCR suggesting that ISH is a sensitive assay mainly in cases carrying high levels of S RNA. In conclusion, our findings demonstrated that ISH assay has lower sensitivity to detect SARS-CoV-2 in FFPE compared to RT-PCR; however, it is able to localize the virus in the cellular context since it preserves the morphology.
Development of a Hamster Natural Transmission Model of SARS-CoV-2 Infection

Viruses

2021 Nov 09

Dowall, S;Salguero, FJ;Wiblin, N;Fotheringham, S;Hatch, G;Parks, S;Gowan, K;Harris, D;Carnell, O;Fell, R;Watson, R;Graham, V;Gooch, K;Hall, Y;Mizen, S;Hewson, R;
PMID: 34835057 | DOI: 10.3390/v13112251

The global pandemic of coronavirus disease (COVID-19) caused by infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to an international thrust to study pathogenesis and evaluate interventions. Experimental infection of hamsters and the resulting respiratory disease is one of the preferred animal models since clinical signs of disease and virus shedding are similar to more severe cases of human COVID-19. The main route of challenge has been direct inoculation of the virus via the intranasal route. To resemble the natural infection, we designed a bespoke natural transmission cage system to assess whether recipient animals housed in physically separate adjacent cages could become infected from a challenged donor animal in a central cage, with equal airflow across the two side cages. To optimise viral shedding in the donor animals, a low and moderate challenge dose were compared after direct intranasal challenge, but similar viral shedding responses were observed and no discernible difference in kinetics. The results from our natural transmission set-up demonstrate that most recipient hamsters are infected within the system developed, with variation in the kinetics and levels of disease between individual animals. Common clinical outputs used for the assessment in directly-challenged hamsters, such as weight loss, are less obvious in hamsters who become infected from naturally acquiring the infection. The results demonstrate the utility of a natural transmission model for further work on assessing the differences between virus strains and evaluating interventions using a challenge system which more closely resembles human infection.
Distinct populations of antigen specific tissue resident CD8 T cells in human cervix mucosa

JCI insight

2021 Jun 22

Peng, T;Phasouk, K;Bossard, E;Klock, A;Jin, L;Laing, KJ;Johnston, C;Williams, NA;Czartoski, JL;Varon, D;Long, AN;Bielas, JH;Snyder, TM;Robins, H;Koelle, DM;McElrath, MJ;Wald, A;Corey, L;Zhu, J;
PMID: 34156975 | DOI: 10.1172/jci.insight.149950

The ectocervix is part of the lower female reproductive tract (FRT), which is susceptible to sexually transmitted infections (STI). Comprehensive knowledge of the phenotypes and T cell receptor (TCR) repertoire of tissue resident memory T cells (TRM) in human FRT is lacking. We have taken single-cell RNA sequencing approaches to simultaneously define gene expression and TCR clonotypes of the human ectocervix. There are significantly more CD8 than CD4 T cells. Unsupervised clustering and trajectory analysis identify distinct populations of CD8 T cells with IFNGhiGZMBlowCD69hiCD103low or IFNGlowGZMBhiCD69medCD103hi phenotypes. Little overlap was seen between their TCR repertoires. Immunofluorescent staining shows that CD103+ CD8 TRM cells preferentially localize in epithelium while CD69+ CD8 TRM distribute evenly in epithelium and stroma. Ex vivo assays indicate up to 14% of cervical CD8 TRM clonotypes are HSV-2 reactive in HSV-2-seropositive persons, reflecting physiologically relevant localization. Our studies identify subgroups of CD8 TRM in the human ectocervix that exhibit distinct expression of antiviral defense and tissue residency markers, anatomic locations, and TCR repertoires that target anatomically relevant viral antigens. Optimization of the location, number, and function of FRT TRM is an important approach for improving host defenses to STI.
SARS-CoV-2 infection and transmission in the North American deer mouse

Nature communications

2021 Jun 14

Griffin, BD;Chan, M;Tailor, N;Mendoza, EJ;Leung, A;Warner, BM;Duggan, AT;Moffat, E;He, S;Garnett, L;Tran, KN;Banadyga, L;Albietz, A;Tierney, K;Audet, J;Bello, A;Vendramelli, R;Boese, AS;Fernando, L;Lindsay, LR;Jardine, CM;Wood, H;Poliquin, G;Strong, JE;Drebot, M;Safronetz, D;Embury-Hyatt, C;Kobasa, D;
PMID: 34127676 | DOI: 10.1038/s41467-021-23848-9

Widespread circulation of SARS-CoV-2 in humans raises the theoretical risk of reverse zoonosis events with wildlife, reintroductions of SARS-CoV-2 into permissive nondomesticated animals. Here we report that North American deer mice (Peromyscus maniculatus) are susceptible to SARS-CoV-2 infection following intranasal exposure to a human isolate, resulting in viral replication in the upper and lower respiratory tract with little or no signs of disease. Further, shed infectious virus is detectable in nasal washes, oropharyngeal and rectal swabs, and viral RNA is detectable in feces and occasionally urine. We further show that deer mice are capable of transmitting SARS-CoV-2 to naïve deer mice through direct contact. The extent to which these observations may translate to wild deer mouse populations remains unclear, and the risk of reverse zoonosis and/or the potential for the establishment of Peromyscus rodents as a North American reservoir for SARS-CoV-2 remains unknown.
Driving axon regeneration by orchestrating neuronal and non-neuronal innate immune responses via the IFNγ-cGAS-STING axis

Neuron

2022 Nov 04

Wang, X;Yang, C;Wang, X;Miao, J;Chen, W;Zhou, Y;Xu, Y;An, Y;Cheng, A;Ye, W;Chen, M;Song, D;Yuan, X;Wang, J;Qian, P;Wu, AR;Zhang, ZY;Liu, K;
PMID: 36370710 | DOI: 10.1016/j.neuron.2022.10.028

The coordination mechanism of neural innate immune responses for axon regeneration is not well understood. Here, we showed that neuronal deletion of protein tyrosine phosphatase non-receptor type 2 sustains the IFNγ-STAT1 activity in retinal ganglion cells (RGCs) to promote axon regeneration after injury, independent of mTOR or STAT3. DNA-damage-induced cGAMP synthase (cGAS)-stimulator of interferon genes (STINGs) activation is the functional downstream signaling. Directly activating neuronal STING by cGAMP promotes axon regeneration. In contrast to the central axons, IFNγ is locally translated in the injured peripheral axons and upregulates cGAS expression in Schwann cells and infiltrating blood cells to produce cGAMP, which promotes spontaneous axon regeneration as an immunotransmitter. Our study demonstrates that injured peripheral nervous system (PNS) axons can direct the environmental innate immune response for self-repair and that the neural antiviral mechanism can be harnessed to promote axon regeneration in the central nervous system (CNS).
Gastrointestinal Pathology in Samples from Coronavirus Disease 2019 (COVID-19)-Positive Patients

Archives of pathology & laboratory medicine

2021 May 07

Westerhoff, M;Jones, D;Hrycaj, SM;Chan, MP;Pantanowitz, L;Tu, H;Choi, K;Greenson, J;Lamps, L;
PMID: 33961007 | DOI: 10.5858/arpa.2021-0137-SA

-Although primarily considered a respiratory illness, coronavirus disease 2019 (COVID-19) can cause gastrointestinal manifestations. -To evaluate histopathology and in situ hybridization for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in gastrointestinal samples from patients with recent and remote COVID-19. -Patients with positive SARS-CoV-2 nasopharyngeal tests and a gastrointestinal tissue specimen were included. SARS-CoV-2 in situ hybridization (ISH) was performed on each sample. A subset had SARS-CoV-2 next generation sequencing (NGS) performed. -Twenty-five patients met inclusion criteria. Five had positive SARS-CoV-2 nasopharyngeal tests within 7 days of their gastrointestinal procedure. Two were ulcerative colitis patients on steroid therapy who lacked typical COVID-19 symptoms. Their colectomies showed severe ulcerative colitis; one demonstrated SARS-CoV-2 by NGS but a negative ISH. Another had an ischemic colon resected as a complication of the COVID-19 course; however, both ISH and NGS were negative. A fourth had a normal-appearing terminal ileum but positive ISH and NGS. The fifth patient had ileal ulcers with SARS-CoV-2 negativity by both modalities. The remaining 20 patients had positive nasopharyngeal tests an average of 53 days prior to procedure. None of their samples demonstrated SARS-CoV-2 ISH positivity, but one was positive on NGS despite a negative nasopharyngeal test. -Gastrointestinal findings from SARS-CoV-2-infected patients ranged from normal with virus detected by ISH and NGS, to bowel ischemia secondary to systemic viral effects, without evidence of virus in the tissue. No distinct histologic finding was identified in those with gastrointestinal tissue specimens demonstrating SARS-CoV-2 positivity in this cohort.
Integrated histopathological, lipidomic, and metabolomic profiles reveal mink is a useful animal model to mimic the pathogenicity of severe COVID-19 patients

Signal transduction and targeted therapy

2022 Jan 28

Song, Z;Bao, L;Deng, W;Liu, J;Ren, E;Lv, Q;Liu, M;Qi, F;Chen, T;Deng, R;Li, F;Liu, Y;Wei, Q;Gao, H;Yu, P;Han, Y;Zhao, W;Zheng, J;Liang, X;Yang, F;Qin, C;
PMID: 35091528 | DOI: 10.1038/s41392-022-00891-6

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted on mink farms between minks and humans in many countries. However, the systemic pathological features of SARS-CoV-2-infected minks are mostly unknown. Here, we demonstrated that minks were largely permissive to SARS-CoV-2, characterized by severe and diffuse alveolar damage, and lasted at least 14 days post inoculation (dpi). We first reported that infected minks displayed multiple organ-system lesions accompanied by an increased inflammatory response and widespread viral distribution in the cardiovascular, hepatobiliary, urinary, endocrine, digestive, and immune systems. The viral protein partially co-localized with activated Mac-2+ macrophages throughout the body. Moreover, we first found that the alterations in lipids and metabolites were correlated with the histological lesions in infected minks, especially at 6 dpi, and were similar to that of patients with severe and fatal COVID-19. Particularly, altered metabolic pathways, abnormal digestion, and absorption of vitamins, lipids, cholesterol, steroids, amino acids, and proteins, consistent with hepatic dysfunction, highlight metabolic and immune dysregulation. Enriched kynurenine in infected minks contributed to significant activation of the kynurenine pathway and was related to macrophage activation. Melatonin, which has significant anti-inflammatory and immunomodulating effects, was significantly downregulated at 6 dpi and displayed potential as a targeted medicine. Our data first illustrate systematic analyses of infected minks to recapitulate those observations in severe and fetal COVID-19 patients, delineating a useful animal model to mimic SARS-CoV-2-induced systematic and severe pathophysiological features and provide a reliable tool for the development of effective and targeted treatment strategies, vaccine research, and potential biomarkers.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?