bioRxiv : the preprint server for biology
Olivarria, GM;Cheng, Y;Furman, S;Pachow, C;Hohsfield, LA;Smith-Geater, C;Miramontes, R;Wu, J;Burns, MS;Tsourmas, KI;Stocksdale, J;Manlapaz, C;Yong, WH;Teijaro, J;Edwards, R;Green, KN;Thompson, LM;Lane, TE;
PMID: 34816260 | DOI: 10.1101/2021.11.15.468761
Unlike SARS-CoV-1 and MERS-CoV, infection with SARS-CoV-2, the viral pathogen responsible for COVID-19, is often associated with neurologic symptoms that range from mild to severe, yet increasing evidence argues the virus does not exhibit extensive neuroinvasive properties. We demonstrate SARS-CoV-2 can infect and replicate in human iPSC-derived neurons and that infection shows limited anti-viral and inflammatory responses but increased activation of EIF2 signaling following infection as determined by RNA sequencing. Intranasal infection of K18 human ACE2 transgenic mice (K18-hACE2) with SARS-CoV-2 resulted in lung pathology associated with viral replication and immune cell infiltration. In addition, ∼50% of infected mice exhibited CNS infection characterized by wide-spread viral replication in neurons accompanied by increased expression of chemokine ( Cxcl9, Cxcl10, Ccl2, Ccl5 and Ccl19 ) and cytokine ( Ifn-λ and Tnf-α ) transcripts associated with microgliosis and a neuroinflammatory response consisting primarily of monocytes/macrophages. Microglia depletion via administration of colony-stimulating factor 1 receptor inhibitor, PLX5622, in SARS-CoV-2 infected mice did not affect survival or viral replication but did result in dampened expression of proinflammatory cytokine/chemokine transcripts and a reduction in monocyte/macrophage infiltration. These results argue that microglia are dispensable in terms of controlling SARS-CoV-2 replication in in the K18-hACE2 model but do contribute to an inflammatory response through expression of pro-inflammatory genes. Collectively, these findings contribute to previous work demonstrating the ability of SARS-CoV-2 to infect neurons as well as emphasizing the potential use of the K18-hACE2 model to study immunological and neuropathological aspects related to SARS-CoV-2-induced neurologic disease.Understanding the immunological mechanisms contributing to both host defense and disease following viral infection of the CNS is of critical importance given the increasing number of viruses that are capable of infecting and replicating within the nervous system. With this in mind, the present study was undertaken to evaluate the role of microglia in aiding in host defense following experimental infection of the central nervous system (CNS) of K18-hACE2 with SARS-CoV-2, the causative agent of COVID-19. Neurologic symptoms that range in severity are common in COVID-19 patients and understanding immune responses that contribute to restricting neurologic disease can provide important insight into better understanding consequences associated with SARS-CoV-2 infection of the CNS.
Clinical & translational immunology
Schimmel, L;Chew, KY;Stocks, CJ;Yordanov, TE;Essebier, P;Kulasinghe, A;Monkman, J;Dos Santos Miggiolaro, AFR;Cooper, C;de Noronha, L;Schroder, K;Lagendijk, AK;Labzin, LI;Short, KR;Gordon, EJ;
PMID: 34721846 | DOI: 10.1002/cti2.1350
Thrombotic and microvascular complications are frequently seen in deceased COVID-19 patients. However, whether this is caused by direct viral infection of the endothelium or inflammation-induced endothelial activation remains highly contentious.Here, we use patient autopsy samples, primary human endothelial cells and an in vitro model of the pulmonary epithelial-endothelial cell barrier.We show that primary human endothelial cells express very low levels of the SARS-CoV-2 receptor ACE2 and the protease TMPRSS2, which blocks their capacity for productive viral infection, and limits their capacity to produce infectious virus. Accordingly, endothelial cells can only be infected when they overexpress ACE2, or are exposed to very high concentrations of SARS-CoV-2. We also show that SARS-CoV-2 does not infect endothelial cells in 3D vessels under flow conditions. We further demonstrate that in a co-culture model endothelial cells are not infected with SARS-CoV-2. Endothelial cells do however sense and respond to infection in the adjacent epithelial cells, increasing ICAM-1 expression and releasing pro-inflammatory cytokines.Taken together, these data suggest that in vivo, endothelial cells are unlikely to be infected with SARS-CoV-2 and that infection may only occur if the adjacent pulmonary epithelium is denuded (basolateral infection) or a high viral load is present in the blood (apical infection). In such a scenario, whilst SARS-CoV-2 infection of the endothelium can occur, it does not contribute to viral amplification. However, endothelial cells may still play a key role in SARS-CoV-2 pathogenesis by sensing adjacent infection and mounting a pro-inflammatory response to SARS-CoV-2.
Obstetrics, Gynecology and Reproduction
Yakimova, A;Borovaya, S;Mukhamedshina, V;Datsenko, N;Kucherenko, S;Pozdnyakov, I;Nikitenko, E;
| DOI: 10.17749/2313-7347/ob.gyn.rep.2022.337
Introduction. During the COVID-19 pandemic, the question regarding an effect of related infection on the body of pregnant women and the fetoplacental complex has emerged, with many aspects of this issue still being unknown. At the moment, it has been proven that in some cases the course of COVID-19 can be accompanied by severe systemic inflammatory reaction leading to hypercoagulable state.Aim: to search for evidence of a direct and/or indirect effect of SARS-CoV-2 infection on human placenta structure.Materials and Methods. Taking into account the goal, this review was compiled according to the type of a narrative review of publications on a topic of interest. A search for English-language publications dated of 01.12.2019 till 01.12.2021 in PubMed/MEDLINE, Cochrane, Web of Science databases was made. The search queries included the following keywords: combinations of «coronavirus» and «infection during pregnancy», «placental structure» and «2019-nCoV», «COVID-19 and pregnancy», «SARSCoV-2 and pregnancy». In the process of writing the article, in order to improve the reader's understanding of the essence of debated issue, there was a need to discuss some of the results with literary sources published earlier 2019 that were not directly related to the topic of the new coronavirus infection (there are 6 such sources). We analyzed full-text publications, both reports on original research and meta-analyses on relevant topics. In total, 351 full-text publications met the query criteria, of which 54 were selected as meeting the objectives of the study. The select reports were discussed by the co-authors, duplicates were excluded and 34 of them were included in this review. In those that were excluded from the review, information about the clinical course of pregnancy and its outcome during novel coronavirus infection prevailed, or isolated cases of studying insignificant placental structural changes were discussed. Studies with a small number of observations were selected only in the case of the uniqueness of the published data, the absence of scientific papers where similar studies would have been conducted in larger sample.Results. Pregnancy complicated by COVID-19 may be accompanied by placental structural changes, which represent both a manifestation of compensatory-adaptive reactions and a consequence of the damaging effect to the placenta due to infectious process. In case of late (in the III trimester) disease in pregnant woman with mild COVID-19, placental disorders are predominantly of compensatory-adaptive nature, specific cytological signs of viral cell damage are uncharacteristic. During COVID-19 infection, chronic histiocytic intervillositis and syncytiotrophoblast necrosis occur more often than in average population, and adverse fetal outcomes are characterized by additional marked increase in intervillous fibrinoid deposition. Before COVID-19 pandemic, chronic histiocytic intervillositis was described in about 6 out of 10,000 placentas (0.6 %) in II and III trimesters.Conclusion. The high frequency of chronic histiocytic intervillositis, both in the placenta of paired women with live-born infants infected prenatally due to maternal virus transmission, and in the placentas of stillborn infected infants, allows us to cautiously assume that such placental structural changes are more characteristic for damage by SARS-CoV-2 rather than other infectious agents. It is necessary to study a relationship between placental structural changes occurred at different gestation ages, as well as clinical course and outcome of pregnancy during COVID-19.
Nakayama, T;Lee, IT;Jiang, S;Matter, MS;Yan, CH;Overdevest, JB;Wu, CT;Goltsev, Y;Shih, LC;Liao, CK;Zhu, B;Bai, Y;Lidsky, P;Xiao, Y;Zarabanda, D;Yang, A;Easwaran, M;Schürch, CM;Chu, P;Chen, H;Stalder, AK;McIlwain, DR;Borchard, NA;Gall, PA;Dholakia, SS;Le, W;Xu, L;Tai, CJ;Yeh, TH;Erickson-Direnzo, E;Duran, JM;Mertz, KD;Hwang, PH;Haslbauer, JD;Jackson, PK;Menter, T;Andino, R;Canoll, PD;DeConde, AS;Patel, ZM;Tzankov, A;Nolan, GP;Nayak, JV;
PMID: 34604819 | DOI: 10.1016/j.xcrm.2021.100421
Understanding viral tropism is an essential step toward reducing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, decreasing mortality from coronavirus disease 2019 (COVID-19) and limiting opportunities for mutant strains to arise. Currently, little is known about the extent to which distinct tissue sites in the human head and neck region and proximal respiratory tract selectively permit SARS-CoV-2 infection and replication. In this translational study, we discover key variabilities in expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), essential SARS-CoV-2 entry factors, among the mucosal tissues of the human proximal airways. We show that SARS-CoV-2 infection is present in all examined head and neck tissues, with a notable tropism for the nasal cavity and tracheal mucosa. Finally, we uncover an association between smoking and higher SARS-CoV-2 viral infection in the human proximal airway, which may explain the increased susceptibility of smokers to developing severe COVID-19. This is at least partially explained by differences in interferon (IFN)-β1 levels between smokers and non-smokers.
SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment
Wu, C;Lidsky, P;Xiao, Y;Lee, I;Cheng, R;Nakayama, T;Jiang, S;Demeter, J;Bevacqua, R;Chang, C;Whitener, R;Stalder, A;Zhu, B;Chen, H;Goltsev, Y;Tzankov, A;Nayak, J;Nolan, G;Matter, M;Andino, R;Jackson, P;
| DOI: 10.1016/j.cmet.2021.05.013
Emerging evidence points toward an intricate relationship between the pandemic of coronavirus disease 2019 (COVID-19) and diabetes. While preexisting diabetes is associated with severe COVID-19, it is unclear whether COVID-19 severity is a cause or consequence of diabetes. To mechanistically link COVID-19 to diabetes, we tested whether insulin-producing pancreatic β cells can be infected by SARS-CoV-2 and cause β cell depletion. We found that the SARS-CoV-2 receptor, ACE2, and related entry factors (TMPRSS2, NRP1, and TRFC) are expressed in β cells, with selectively high expression of NRP1. We discovered that SARS-CoV-2 infects human pancreatic β cells in patients who succumbed to COVID-19 and selectively infects human islet β cells in vitro. We demonstrated that SARS-CoV-2 infection attenuates pancreatic insulin levels and secretion and induces β cell apoptosis, each rescued by NRP1 inhibition. Phosphoproteomic pathway analysis of infected islets indicates apoptotic β cell signaling, similar to that observed in type 1 diabetes (T1D). In summary, our study shows SARS-CoV-2 can directly induce β cell killing.
Proceedings of the National Academy of Sciences of the United States of America
Morrison, CB;Edwards, CE;Shaffer, KM;Araba, KC;Wykoff, JA;Williams, DR;Asakura, T;Dang, H;Morton, LC;Gilmore, RC;O'Neal, WK;Boucher, RC;Baric, RS;Ehre, C;
PMID: 35353667 | DOI: 10.1073/pnas.2119680119
Significance Gaining insights into severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) high transmissibility and the role played by inflammatory mediators in viral proliferation are critical to investigating new therapeutic targets against COVID-19. Electron microscopy reveals important SARS-CoV-2 features, including the combination of large, rapidly released viral clusters and the massive shedding of epithelial cells packed with virions. Interleukin-13 (IL-13), a Th2 cytokine up-regulated in allergic asthma and associated with less severe COVID-19, protects against SARS-CoV-2 viral and cell shedding. Using gene expression analyses and biochemical assays, IL-13 is shown to affect viral entry, replication, and cell-to-cell transmission. Given the broad spectrum of COVID-19 clinical symptoms, it is important to elucidate intrinsic factors that modulate viral load and spreading mechanisms.
Chang, YC;Yang, CF;Chen, YF;Yang, CC;Chou, YL;Chou, HW;Chang, TY;Chao, TL;Hsu, SC;Ieong, SM;Tsai, YM;Liu, PC;Chin, YF;Fang, JT;Kao, HC;Lu, HY;Chang, JY;Weng, RS;Tu, QW;Chang, FY;Huang, KY;Lee, TY;Chang, SY;Yang, PC;
PMID: 35138028 | DOI: 10.15252/emmm.202115298
The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants has altered the trajectory of the COVID-19 pandemic and raised some uncertainty on the long-term efficiency of vaccine strategy. The development of new therapeutics against a wide range of SARS-CoV-2 variants is imperative. We, here, have designed an inhalable siRNA, C6G25S, which covers 99.8% of current SARS-CoV-2 variants and is capable of inhibiting dominant strains, including Alpha, Delta, Gamma, and Epsilon, at picomolar ranges of IC50 in vitro. Moreover, C6G25S could completely inhibit the production of infectious virions in lungs by prophylactic treatment, and decrease 96.2% of virions by cotreatment in K18-hACE2-transgenic mice, accompanied by a significant prevention of virus-associated extensive pulmonary alveolar damage, vascular thrombi, and immune cell infiltrations. Our data suggest that C6G25S provides an alternative and effective approach to combating the COVID-19 pandemic.