Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (183)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • (-) Remove SARS-CoV-2 filter SARS-CoV-2 (136)
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • (-) Remove egfp filter egfp (46)
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope (45) Apply RNAscope filter
  • RNAscope 2.5 HD Red assay (30) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Fluorescent Multiplex Assay (26) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (25) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Brown Assay (15) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (6) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 LS Assay (6) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Multiplex Fluorescent v2 (5) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 HD Duplex (3) Apply RNAscope 2.5 HD Duplex filter
  • TBD (3) Apply TBD filter
  • RNAscope 2.0 Assay (2) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 LS Reagent Kits (1) Apply RNAscope 2.5 LS Reagent Kits filter
  • RNAscope 2.5 VS Assay (1) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Fluorescent Multiplex Reagent kit (1) Apply RNAscope Fluorescent Multiplex Reagent kit filter

Research area

  • Covid (113) Apply Covid filter
  • Infectious (39) Apply Infectious filter
  • Neuroscience (36) Apply Neuroscience filter
  • Inflammation (12) Apply Inflammation filter
  • Immunotherapy (8) Apply Immunotherapy filter
  • Reproduction (7) Apply Reproduction filter
  • Other (6) Apply Other filter
  • Developmental (4) Apply Developmental filter
  • Infectious Disease (4) Apply Infectious Disease filter
  • Vaccines (4) Apply Vaccines filter
  • Development (3) Apply Development filter
  • Vaccine (3) Apply Vaccine filter
  • CGT (2) Apply CGT filter
  • Covid-19 (2) Apply Covid-19 filter
  • Heart Disease (2) Apply Heart Disease filter
  • Long Covid (2) Apply Long Covid filter
  • Lung (2) Apply Lung filter
  • Metabolism (2) Apply Metabolism filter
  • Neuroinflammation (2) Apply Neuroinflammation filter
  • Other: Methods (2) Apply Other: Methods filter
  • Sex Differences (2) Apply Sex Differences filter
  • Single Cell (2) Apply Single Cell filter
  • Stem Cells (2) Apply Stem Cells filter
  • Aging (1) Apply Aging filter
  • Anxiety (1) Apply Anxiety filter
  • Behavior (1) Apply Behavior filter
  • Bioinformatics (1) Apply Bioinformatics filter
  • Cancer (1) Apply Cancer filter
  • Cardiovascular Disease (1) Apply Cardiovascular Disease filter
  • COVID-19-associated pulmonary aspergillosis (1) Apply COVID-19-associated pulmonary aspergillosis filter
  • emotional valence (1) Apply emotional valence filter
  • Heart (1) Apply Heart filter
  • Immunothearpy (1) Apply Immunothearpy filter
  • Infectious Disease: influenza-associated pulmonary aspergillosis (1) Apply Infectious Disease: influenza-associated pulmonary aspergillosis filter
  • Infectiouse Disease: Flu (1) Apply Infectiouse Disease: Flu filter
  • Kidney (1) Apply Kidney filter
  • Locomotion (1) Apply Locomotion filter
  • Long-Covid (1) Apply Long-Covid filter
  • Memory (1) Apply Memory filter
  • Nueroscience (1) Apply Nueroscience filter
  • Organ transplant (1) Apply Organ transplant filter
  • Other: Opioid use disorder (1) Apply Other: Opioid use disorder filter
  • Pain (1) Apply Pain filter
  • pharmacotherapy (1) Apply pharmacotherapy filter
  • Respiratory Disease (1) Apply Respiratory Disease filter
  • Sleep (1) Apply Sleep filter
  • Stem cell (1) Apply Stem cell filter
  • Stress (1) Apply Stress filter
  • Vaccines Associated Hepatitis (1) Apply Vaccines Associated Hepatitis filter
  • Weight Loss (1) Apply Weight Loss filter

Category

  • Publications (183) Apply Publications filter
Neuropsychiatric manifestations of COVID-19, potential neurotropic mechanisms, and therapeutic interventions

Translational psychiatry

2021 Sep 30

Han, Y;Yuan, K;Wang, Z;Liu, WJ;Lu, ZA;Liu, L;Shi, L;Yan, W;Yuan, JL;Li, JL;Shi, J;Liu, ZC;Wang, GH;Kosten, T;Bao, YP;Lu, L;
PMID: 34593760 | DOI: 10.1038/s41398-021-01629-8

The coronavirus disease 2019 (COVID-19) pandemic has caused large-scale economic and social losses and worldwide deaths. Although most COVID-19 patients have initially complained of respiratory insufficiency, the presence of neuropsychiatric manifestations is also reported frequently, ranging from headache, hyposmia/anosmia, and neuromuscular dysfunction to stroke, seizure, encephalopathy, altered mental status, and psychiatric disorders, both in the acute phase and in the long term. These neuropsychiatric complications have emerged as a potential indicator of worsened clinical outcomes and poor prognosis, thus contributing to mortality in COVID-19 patients. Their etiology remains largely unclear and probably involves multiple neuroinvasive pathways. Here, we summarize recent animal and human studies for neurotrophic properties of severe acute respiratory syndrome coronavirus (SARS-CoV-2) and elucidate potential neuropathogenic mechanisms involved in the viral invasion of the central nervous system as a cause for brain damage and neurological impairments. We then discuss the potential therapeutic strategy for intervening and preventing neuropsychiatric complications associated with SARS-CoV-2 infection. Time-series monitoring of clinical-neurochemical-radiological progress of neuropsychiatric and neuroimmune complications need implementation in individuals exposed to SARS-CoV-2. The development of a screening, intervention, and therapeutic framework to prevent and reduce neuropsychiatric sequela is urgently needed and crucial for the short- and long-term recovery of COVID-19 patients.
LB740 SARS-CoV-2-associated ‘covid toes:’ multiplex immunofluorescent characterization of pathophysiology

Journal of Investigative Dermatology

2021 Sep 01

Moon, J;Costa da Silva, A;Tran, J;Kim, C;Sharma, R;Hinshaw, M;Shields, B;Brooks, E;Cowen, E;Singh, A;Drolet, B;Mays, J;Arkin, L;
| DOI: 10.1016/j.jid.2021.07.093

Coincident with the start of the COVID-19 pandemic, dermatologists worldwide have reported an uncharacteristic increase in pernio or chilblains (aka ‘COVID toes’). However, the lack of systemic illness, low PCR positivity and lack of consistent seroconversion have led some authors to postulate an epiphenomenon. SARS-CoV-2 spike protein has been identified in a limited number of skin biopsies in few publications, yet there remain conflicting reports regarding other SARS-CoV-2 associated proteins, the presence or absence of viral RNA, and a unifying pathophysiology. In cooperation with the COVID Human Genome Effort, our “COVID toes” biobank was established to identify both the genetic and immunologic basis and provide clinically relevant insights into targeted therapeutics. As of March 2021, we have enrolled 96 patients, creating a prospective biorepository with clinical data, saliva, serial blood collection, and skin biopsies. Here we aim to comprehensively investigate the conflicting findings, detail the inflammatory response, and identify the source of interferon signaling with multiplex immunofluorescence (IFA) and the RNAscope fluorescent assay to detect viral mRNA. Median patient age was 17 (range 2 e 72) and 44/96 (46%) were male. Preliminary IFA results demonstrate detection of SARS-CoV-2 components, robust MxA detection and plasmacytoid dendritic cell (pDC) colocalization, identifying PDCs as the likely primary source of IFN-I production and implicates an excessive localized IFN-I response in affected patients.
SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters

Nature

2022 Jan 21

Halfmann, PJ;Iida, S;Iwatsuki-Horimoto, K;Maemura, T;Kiso, M;Scheaffer, SM;Darling, TL;Joshi, A;Loeber, S;Singh, G;Foster, SL;Ying, B;Case, JB;Chong, Z;Whitener, B;Moliva, J;Floyd, K;Ujie, M;Nakajima, N;Ito, M;Wright, R;Uraki, R;Warang, P;Gagne, M;Li, R;Sakai-Tagawa, Y;Liu, Y;Larson, D;Osorio, JE;Hernandez-Ortiz, JP;Henry, AR;Ciouderis, K;Florek, KR;Patel, M;Odle, A;Wong, LR;Bateman, AC;Wang, Z;Edara, VV;Chong, Z;Franks, J;Jeevan, T;Fabrizio, T;DeBeauchamp, J;Kercher, L;Seiler, P;Gonzalez-Reiche, AS;Sordillo, EM;Chang, LA;van Bakel, H;Simon, V;Consortium Mount Sinai Pathogen Surveillance (PSP) study group, ;Douek, DC;Sullivan, NJ;Thackray, LB;Ueki, H;Yamayoshi, S;Imai, M;Perlman, S;Webby, RJ;Seder, RA;Suthar, MS;García-Sastre, A;Schotsaert, M;Suzuki, T;Boon, ACM;Diamond, MS;Kawaoka, Y;
PMID: 35062015 | DOI: 10.1038/s41586-022-04441-6

The recent emergence of B.1.1.529, the Omicron variant1,2 has raised concerns for escape from protection by vaccines and therapeutic antibodies. A key test for potential countermeasures against B.1.1.529 is their activity in pre-clinical rodent models of respiratory tract disease. Here, using the collaborative network of the SARS-CoV-2 Assessment of Viral Evolution (SAVE) program of the National Institute of Allergy and Infectious Diseases (NIAID), we evaluated the ability of multiple B.1.1.529 Omicron isolates to cause infection and disease in immunocompetent and human ACE2 (hACE2) expressing mice and hamsters. Despite modeling data suggesting that B.1.1.529 spike can bind more avidly to murine ACE23,4, we observed less infection in 129, C57BL/6, BALB/c, and K18-hACE2 transgenic mice as compared with previous SARS-CoV-2 variants, with limited weight loss and lower viral burden in the upper and lower respiratory tracts. In wild-type and hACE2 transgenic hamsters, lung infection, clinical disease, and pathology with B.1.1.529 also were milder compared to historical isolates or other SARS-CoV-2 variants of concern. Overall, experiments from the SAVE/NIAID network with several B.1.1.529 isolates demonstrate attenuated lung disease in rodents, which parallels preliminary human clinical data.
Single-nuclear transcriptomics reveals diversity of proximal tubule cell states in a dynamic response to acute kidney injury

Proceedings of the National Academy of Sciences of the United States of America

2021 Jul 06

Gerhardt, LMS;Liu, J;Koppitch, K;Cippà, PE;McMahon, AP;
PMID: 34183416 | DOI: 10.1073/pnas.2026684118

Acute kidney injury (AKI), commonly caused by ischemia, sepsis, or nephrotoxic insult, is associated with increased mortality and a heightened risk of chronic kidney disease (CKD). AKI results in the dysfunction or death of proximal tubule cells (PTCs), triggering a poorly understood autologous cellular repair program. Defective repair associates with a long-term transition to CKD. We performed a mild-to-moderate ischemia-reperfusion injury (IRI) to model injury responses reflective of kidney injury in a variety of clinical settings, including kidney transplant surgery. Single-nucleus RNA sequencing of genetically labeled injured PTCs at 7-d ("early") and 28-d ("late") time points post-IRI identified specific gene and pathway activity in the injury-repair transition. In particular, we identified Vcam1 +/Ccl2 + PTCs at a late injury stage distinguished by marked activation of NF-κB-, TNF-, and AP-1-signaling pathways. This population of PTCs showed features of a senescence-associated secretory phenotype but did not exhibit G2/M cell cycle arrest, distinct from other reports of maladaptive PTCs following kidney injury. Fate-mapping experiments identified spatially and temporally distinct origins for these cells. At the cortico-medullary boundary (CMB), where injury initiates, the majority of Vcam1 +/Ccl2 + PTCs arose from early replicating PTCs. In contrast, in cortical regions, only a subset of Vcam1 +/Ccl2 + PTCs could be traced to early repairing cells, suggesting late-arising sites of secondary PTC injury. Together, these data indicate even moderate IRI is associated with a lasting injury, which spreads from the CMB to cortical regions. Remaining failed-repair PTCs are likely triggers for chronic disease progression.
Bilateral Chilblain-like Lesions of the Toes Characterized by Microvascular Remodeling in Adolescents During the COVID-19 Pandemic

JAMA network open

2021 Jun 01

Discepolo, V;Catzola, A;Pierri, L;Mascolo, M;Della Casa, F;Vastarella, M;Smith, G;Travaglino, A;Punziano, A;Nappa, P;Staibano, S;Bruzzese, E;Fabbrocini, G;Guarino, A;Alessio, M;
PMID: 34110396 | DOI: 10.1001/jamanetworkopen.2021.11369

Chilblain-like lesions have been one of the most frequently described cutaneous manifestations during the COVID-19 pandemic. Their etiopathogenesis, including the role of SARS-CoV-2, remains elusive.To examine the association of chilblain-like lesions with SARS-CoV-2 infection.This prospective case series enrolled 17 adolescents who presented with chilblain-like lesions from April 1 to June 30, 2020, at a tertiary referral academic hospital in Italy.Macroscopic (clinical and dermoscopic) and microscopic (histopathologic) analysis contributed to a thorough understanding of the lesions. Nasopharyngeal swab, serologic testing, and in situ hybridization of the skin biopsy specimens were performed to test for SARS-CoV-2 infection. Laboratory tests explored signs of systemic inflammation or thrombophilia. Structural changes in peripheral microcirculation were investigated by capillaroscopy.Of the 17 adolescents (9 [52.9%] male; median [interquartile range] age, 13.2 [12.5-14.3] years) enrolled during the first wave of the COVID-19 pandemic, 16 (94.1%) had bilaterally localized distal erythematous or cyanotic lesions. A triad of red dots (16 [100%]), white rosettes (11 [68.8%]), and white streaks (10 [62.5%]) characterized the dermoscopic picture. Histologic analysis revealed a remodeling of the dermal blood vessels with a lobular arrangement, wall thickening, and a mild perivascular lymphocytic infiltrate. SARS-CoV-2 infection was excluded by molecular and serologic testing. In situ hybridization did not highlight the viral genome in the lesions.This study delineated the clinical, histologic, and laboratory features of chilblain-like lesions that emerged during the COVID-19 pandemic, and its findings do not support their association with SARS-CoV-2 infection. The lesions occurred in otherwise healthy adolescents, had a long but benign course to self-resolution, and were characterized by a microvascular remodeling with perivascular lymphocytic infiltrate but no other signs of vasculitis. These results suggest that chilblain-like lesions do not imply a concomitant SARS-CoV-2 infection. Ongoing studies will help clarify the etiopathogenic mechanisms.
Hamsters Expressing Human Angiotensin-Converting Enzyme 2 Develop Severe Disease following Exposure to SARS-CoV-2

mBio

2022 Jan 25

Golden, JW;Li, R;Cline, CR;Zeng, X;Mucker, EM;Fuentes-Lao, AJ;Spik, KW;Williams, JA;Twenhafel, N;Davis, N;Moore, JL;Stevens, S;Blue, E;Garrison, AR;Larson, DD;Stewart, R;Kunzler, M;Liu, Y;Wang, Z;Hooper, JW;
PMID: 35073750 | DOI: 10.1128/mbio.02906-21

The rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created a global health emergency. While most human disease is mild to moderate, some infections lead to a severe disease characterized by acute respiratory distress, hypoxia, anosmia, ageusia, and, in some instances, neurological involvement. Small-animal models reproducing severe disease, including neurological sequela, are needed to characterize the pathophysiological mechanism(s) of disease and to identify medical countermeasures. Transgenic mice expressing the human angiotensin-converting enzyme 2 (hACE2) viral receptor under the control of the K18 promoter develop severe and lethal respiratory disease subsequent to SARS-CoV-2 intranasal challenge when high viral doses are used. Here, we report on SARS-CoV-2 infection of hamsters engineered to express the hACE2 receptor under the control of the K18 promoter. K18-hACE2 hamsters infected with a relatively low dose of 100 or 1,000 PFU of SARS-CoV-2 developed a severe and lethal disease, with most animals succumbing by day 5 postinfection. Hamsters developed severe lesions and inflammation within the upper and lower respiratory system, including infection of the nasal cavities causing marked destruction of the olfactory epithelium as well as severe bronchopneumonia that extended deep into the alveoli. Additionally, SARS-CoV-2 infection spread to the central nervous system (CNS), including the brain stem and spinal cord. Wild-type (WT) hamsters naturally support SARS-CoV-2 infection, with the primary lesions present in the respiratory tract and nasal cavity. Overall, infection in the K18-hACE2 hamsters is more extensive than that in WT hamsters, with more CNS involvement and a lethal outcome. These findings demonstrate the K18-hACE2 hamster model will be valuable for studying SARS-CoV-2. IMPORTANCE The rapid emergence of SARS-CoV-2 has created a global health emergency. While most human SARS-CoV-2 disease is mild, some people develop severe, life-threatening disease. Small-animal models mimicking the severe aspects of human disease are needed to more clearly understand the pathophysiological processes driving this progression. Here, we studied SARS-CoV-2 infection in hamsters engineered to express the human angiotensin-converting enzyme 2 viral receptor under the control of the K18 promoter. SARS-CoV-2 produces a severe and lethal infection in transgenic hamsters that mirrors the most severe aspects of COVID-19 in humans, including respiratory and neurological injury. In contrast to other animal systems, hamsters manifest disease with levels of input virus more consistent with natural human infection. This system will be useful for the study of SARS-CoV-2 disease and the development of drugs targeting this virus.
Postmortem Minimally Invasive Autopsy in Critically Ill Covid-19 Patients at the Bedside: A Proof-of-Concept Study at the Icu

SSRN

2023 Jun 02

Lahmer, T;Weirich, G;Porubsky, S;Rasch, S;Kammerstetter, F;Schustetter, C;Schüffler, P;Erber, J;Dibos, M;delbridge, c;kuhn, p;Jeske, S;steinhardt, m;Chaker, A;Heim, M;Heemann, U;Schmid, R;weichert, W;Stock, K;Slotta, J;
| DOI: 10.2139/ssrn.4464818

Methods: In this proof-of-concept study, we performed bedside ultrasound-guided minimally invasive autopsies (US-MIA) of patients that had died from critical COVID-19 in the intensive care unit (ICU) using a structured protocol to obtain almost autolytic-free tissue. Biopsies were assessed for quality (vitality and length) and for diagnosis. The efficiency of the procedure was monitored in five cases by recording the time of each step and safety issues by swabbing personal protective equipment and devices for viral contamination. 
Diagnostic role of technitium-99m bone scan in severe COVID-19-associated myositis

Radiology case reports

2021 May 14

Hookey, G;Ahmad, Q;McCune, T;Kowalewska, J;Amaker, B;Inayat, N;
PMID: 34007372 | DOI: 10.1016/j.radcr.2021.05.019

Coronavirus disease 2019 (COVID-19), initially appreciated as a respiratory illness, is now known to affect many organs in the human body. Significant data has become available on muscle involvement, with creatinine kinase elevations present in a significant percentage of patients. For those with suspected COVID-19-associated myositis, the imaging modality of choice has been gadolinium-enhanced magnetic resonance imaging; however, the use of technitium-99m bone scan has not been previously reported. Here, we report two cases of COVID-19 patients with severe elevation in creatinine kinase who underwent technitium-99m bone scan. The resulting images showed diffuse symmetrical muscle involvement. Both patients developed acute renal injury due to rhabdomyolysis. To our knowledge, this is the first report of bone scan as a diagnostic imaging modality for COVID-19-associated myositis.
Lung transplantation for coronavirus disease 2019 associated severe acute respiratory distress syndrome

Current opinion in anaesthesiology

2022 Oct 28

Garza-Castillon, R;Bharat, A;
PMID: 36302203 | DOI: 10.1097/ACO.0000000000001203

The purpose of this review is to analyze the most recent and relevant literature involving lung transplantation for coronavirus disease 2019 (COVID-19) associated acute respiratory distress syndrome (ARDS), the pathological mechanisms of lung injury, selection criteria and outcomes.Pathological analysis of lungs after COVID-19 ARDS has shown architectural distortion similar to that observed in explanted lungs from patients undergoing lung transplantation for end-stage lung diseases such as emphysema. Short-term outcomes after lung transplantation for COVID-19 associated respiratory failure are comparable to those performed for other indications.Lung transplantation after COVID-19 ARDS is a potentially life-saving procedure for appropriately selected patients with no evidence of lung function recovery despite maximal treatment. Lung transplantation should be ideally performed in high-volume centers with expertise.
Inflammatory responses in the placenta upon SARS-CoV-2 infection late in pregnancy

iScience

2022 May 20

Argueta, LB;Lacko, LA;Bram, Y;Tada, T;Carrau, L;Rendeiro, AF;Zhang, T;Uhl, S;Lubor, BC;Chandar, V;Gil, C;Zhang, W;Dodson, BJ;Bastiaans, J;Prabhu, M;Houghton, S;Redmond, D;Salvatore, CM;Yang, YJ;Elemento, O;Baergen, RN;tenOever, BR;Landau, NR;Chen, S;Schwartz, RE;Stuhlmann, H;
PMID: 35434541 | DOI: 10.1016/j.isci.2022.104223

The effect of SARS-CoV-2 infection on placental function is not well understood. Analysis of placentas from women who tested positive at delivery showed SARS-CoV-2 genomic and subgenomic RNA in 22 out of 52 placentas. Placentas from two mothers with symptomatic COVID-19 whose pregnancies resulted in adverse outcomes for the fetuses contained high levels of viral Alpha variant RNA. The RNA was localized to the trophoblasts that cover the fetal chorionic villi in direct contact with maternal blood. The intervillous spaces and villi were infiltrated with maternal macrophages and T cells. Transcriptome analysis showed an increased expression of chemokines and pathways associated with viral infection and inflammation. Infection of placental cultures with live SARS-CoV-2 and spike protein-pseudotyped lentivirus showed infection of syncytiotrophoblast and, in rare cases, endothelial cells mediated by ACE2 and Neuropilin-1. Viruses with Alpha, Beta, and Delta variant spikes infected the placental cultures at significantly greater levels.
The role of CSF1R-dependent macrophages in control of the intestinal stem-cell niche

Nat. Commun.

2018 Mar 28

Sehgal A, Donaldson DS, Pridans C, Sauter KA, Hume DA, Mabbott NA.
PMID: 29593242 | DOI: 10.1038/s41467-018-03638-6

Colony-stimulating factor 1 (CSF1) controls the growth and differentiation of macrophages.CSF1R signaling has been implicated in the maintenance of the intestinal stem cell niche and differentiation of Paneth cells, but evidence of expression of CSF1R within the crypt is equivocal. Here we show that CSF1R-dependent macrophages influence intestinal epithelial differentiation and homeostasis. In the intestinallamina propria CSF1R mRNA expression is restricted to macrophages which are intimately associated with the crypt epithelium, and is undetectable in Paneth cells. Macrophage ablation following CSF1R blockade affects Paneth cell differentiation and leads to a reduction of Lgr5+ intestinal stem cells. The disturbances to the crypt caused by macrophage depletion adversely affect the subsequent differentiation of intestinal epithelial cell lineages. Goblet cell density is enhanced, whereas the development of M cells in Peyer's patches is impeded. We suggest that modification of the phenotype or abundance of macrophages in the gut wall alters the development of the intestinal epithelium and the ability to sample gut antigens.

Learning-Related Plasticity in Dendrite-Targeting Layer 1 Interneurons

Neuron

2018 Sep 27

Abs E, Poorthuis RB, Apelblat D, Muhammad K, Pardi MB, Enke L, Kushinsky D, Pu DL, Eizinger MF, Conzelmann KK, Spiegel I, Letzkus JJ.
PMID: - | DOI: 10.1016/j.neuron.2018.09.001

A wealth of data has elucidated the mechanisms by which sensory inputs are encoded in the neocortex, but how these processes are regulated by the behavioral relevance of sensory information is less understood. Here, we focus on neocortical layer 1 (L1), a key location for processing of such top-down information. Using Neuron-Derived Neurotrophic Factor(NDNF) as a selective marker of L1 interneurons (INs) and in vivo 2-photon calcium imaging, electrophysiology, viral tracing, optogenetics, and associative memory, we find that L1 NDNF-INs mediate a prolonged form of inhibition in distal pyramidal neuron dendrites that correlates with the strength of the memory trace. Conversely, inhibition from Martinotti cells remains unchanged after conditioning but in turn tightly controls sensory responses in NDNF-INs. These results define a genetically addressable form of dendritic inhibition that is highly experience dependent and indicate that in addition to disinhibition, salient stimuli are encoded at elevated levels of distal dendritic inhibition.

Pages

  • « first
  • ‹ previous
  • …
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?