Wanner, N;Andrieux, G;Badia-I-Mompel, P;Edler, C;Pfefferle, S;Lindenmeyer, MT;Schmidt-Lauber, C;Czogalla, J;Wong, MN;Okabayashi, Y;Braun, F;Lütgehetmann, M;Meister, E;Lu, S;Noriega, MLM;Günther, T;Grundhoff, A;Fischer, N;Bräuninger, H;Lindner, D;Westermann, D;Haas, F;Roedl, K;Kluge, S;Addo, MM;Huber, S;Lohse, AW;Reiser, J;Ondruschka, B;Sperhake, JP;Saez-Rodriguez, J;Boerries, M;Hayek, SS;Aepfelbacher, M;Scaturro, P;Puelles, VG;Huber, TB;
PMID: 35347318 | DOI: 10.1038/s42255-022-00552-6
Extrapulmonary manifestations of COVID-19 have gained attention due to their links to clinical outcomes and their potential long-term sequelae1. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) displays tropism towards several organs, including the heart and kidney. Whether it also directly affects the liver has been debated2,3. Here we provide clinical, histopathological, molecular and bioinformatic evidence for the hepatic tropism of SARS-CoV-2. We find that liver injury, indicated by a high frequency of abnormal liver function tests, is a common clinical feature of COVID-19 in two independent cohorts of patients with COVID-19 requiring hospitalization. Using autopsy samples obtained from a third patient cohort, we provide multiple levels of evidence for SARS-CoV-2 liver tropism, including viral RNA detection in 69% of autopsy liver specimens, and successful isolation of infectious SARS-CoV-2 from liver tissue postmortem. Furthermore, we identify transcription-, proteomic- and transcription factor-based activity profiles in hepatic autopsy samples, revealing similarities to the signatures associated with multiple other viral infections of the human liver. Together, we provide a comprehensive multimodal analysis of SARS-CoV-2 liver tropism, which increases our understanding of the molecular consequences of severe COVID-19 and could be useful for the identification of organ-specific pharmacological targets.
Bader, SM;Cooney, JP;Pellegrini, M;Doerflinger, M;
PMID: 35244141 | DOI: 10.1042/BCJ20210602
Two years after the emergence of SARS-CoV-2, our understanding of COVID-19 disease pathogenesis is still incomplete. Despite unprecedented global collaborative scientific efforts and rapid vaccine development, an uneven vaccine roll-out and the emergence of novel variants of concern such as omicron underscore the critical importance of identifying the mechanisms that contribute to this disease. Overt inflammation and cell death have been proposed to be central drivers of severe pathology in COVID-19 patients and their pathways and molecular components therefore present promising targets for host-directed therapeutics. In our review, we summarize the current knowledge on the role and impact of diverse programmed cell death (PCD) pathways on COVID-19 disease. We dissect the complex connection of cell death and inflammatory signaling at the cellular and molecular level and identify a number of critical questions that remain to be addressed. We provide rationale for targeting of cell death as potential COVID-19 treatment and provide an overview of current therapeutics that could potentially enter clinical trials in the near future.
bioRxiv : the preprint server for biology
Dinnon, KH;Leist, SR;Okuda, K;Dang, H;Fritch, EJ;Gully, KL;De la Cruz, G;Evangelista, MD;Asakura, T;Gilmore, RC;Hawkins, P;Nakano, S;West, A;Schäfer, A;Gralinski, LE;Everman, JL;Sajuthi, SP;Zweigart, MR;Dong, S;McBride, J;Cooley, MR;Hines, JB;Love, MK;Groshong, SD;VanSchoiack, A;Phelan, SJ;Liang, Y;Hether, T;Leon, M;Zumwalt, RE;Barton, LM;Duval, EJ;Mukhopadhyay, S;Stroberg, E;Borczuk, A;Thorne, LB;Sakthivel, MK;Lee, YZ;Hagood, JS;Mock, JR;Seibold, MA;O'Neal, WK;Montgomery, SA;Boucher, RC;Baric, RS;
PMID: 35194605 | DOI: 10.1101/2022.02.15.480515
COVID-19 survivors develop post-acute sequelae of SARS-CoV-2 (PASC), but the mechanistic basis of PASC-associated lung abnormalities suffers from a lack of longitudinal samples. Mouse-adapted SARS-CoV-2 MA10 produces an acute respiratory distress syndrome (ARDS) in mice similar to humans. To investigate PASC pathogenesis, studies of MA10-infected mice were extended from acute disease through clinical recovery. At 15-120 days post-virus clearance, histologic evaluation identified subpleural lesions containing collagen, proliferative fibroblasts, and chronic inflammation with tertiary lymphoid structures. Longitudinal spatial transcriptional profiling identified global reparative and fibrotic pathways dysregulated in diseased regions, similar to human COVID-19. Populations of alveolar intermediate cells, coupled with focal upregulation of pro-fibrotic markers, were identified in persistently diseased regions. Early intervention with antiviral EIDD-2801 reduced chronic disease, and early anti-fibrotic agent (nintedanib) intervention modified early disease severity. This murine model provides opportunities to identify pathways associated with persistent SARS-CoV-2 pulmonary disease and test countermeasures to ameliorate PASC.
Kidney allograft biopsy findings after COVID-19
American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons
Daniel, E;Sekulic, M;Kudose, S;Kubin, C;Ye, X;Shayan, K;Patel, A;Cohen, DJ;Ratner, L;Santoriello, D;Stokes, MB;Markowitz, GS;Pereira, MR;D'Agati, VD;Batal, I;
PMID: 34403563 | DOI: 10.1111/ajt.16804
COVID-19 has been associated with acute kidney injury and published reports of native kidney biopsies have reported diverse pathologies. Case series directed specifically to kidney allograft biopsy findings in the setting of COVID-19 are lacking. We evaluated 18 kidney transplant recipients who were infected with SARS-CoV-2 and underwent allograft biopsy. Patients had a median age of 55 years, six were female, and five were Black. Fifteen patients developed COVID-19 pneumonia, of which five required mechanical ventilation. Notably, five of eleven (45%) biopsies obtained within one month of positive SARS-CoV-2 PCR showed acute rejection (four with arteritis, three of which were not associated with reduced immunosuppression). The remaining six biopsies revealed podocytopathy (n=2, collapsing glomerulopathy and lupus podocytopathy), acute tubular injury (n=2), infarction (n=1), and transplant glomerulopathy (n=1). Biopsies performed >1 month after positive SARS-CoV-2 PCR revealed collapsing glomerulopathy (n=1), acute tubular injury (n=1), and non-specific histologic findings (n=5). No direct viral infection of the kidney allograft was detected by immunohistochemistry, in situ hybridization, or electron microscopy. On follow-up, two patients died and most patients showed persistent allograft dysfunction. In conclusion, we demonstrate diverse causes of kidney allograft dysfunction after COVID-19, the most common being acute rejection with arteritis.This article is protected by
Ventral pallidum DRD3 potentiates a pallido-habenular circuit driving accumbal dopamine release and cocaine seeking
Pribiag, H;Shin, S;Wang, EH;Sun, F;Datta, P;Okamoto, A;Guss, H;Jain, A;Wang, XY;De Freitas, B;Honma, P;Pate, S;Lilascharoen, V;Li, Y;Lim, BK;
PMID: 34048697 | DOI: 10.1016/j.neuron.2021.05.002
Drugs of abuse induce persistent remodeling of reward circuit function, a process thought to underlie the emergence of drug craving and relapse to drug use. However, how circuit-specific, drug-induced molecular and cellular plasticity can have distributed effects on the mesolimbic dopamine reward system to facilitate relapse to drug use is not fully elucidated. Here, we demonstrate that dopamine receptor D3 (DRD3)-dependent plasticity in the ventral pallidum (VP) drives potentiation of dopamine release in the nucleus accumbens during relapse to cocaine seeking after abstinence. We show that two distinct VP DRD3+ neuronal populations projecting to either the lateral habenula (LHb) or the ventral tegmental area (VTA) display different patterns of activity during drug seeking following abstinence from cocaine self-administration and that selective suppression of elevated activity or DRD3 signaling in the LHb-projecting population reduces drug seeking. Together, our results uncover how circuit-specific DRD3-mediated plasticity contributes to the process of drug relapse.
bioRxiv : the preprint server for biology
Su, Y;Xu, J;Zhu, Z;Yu, H;Nudell, V;Dash, B;Moya, EA;Ye, L;Nimmerjahn, A;Sun, X;
PMID: 36778350 | DOI: 10.1101/2023.02.04.527145
Chronic exposure of the lung to irritants such as allergen is a primary cause of asthma characterized by exaggerated airway constriction, also called hyperreactivity, which can be life-threatening. Aside from immune cells, vagal sensory neurons are important for airway hyperreactivity 1â€"4 . However, the identity and signature of the downstream nodes of this adaptive circuit remains poorly understood. Here we show that a single population of Dbh + neurons in the nucleus of the solitary tract (nTS) of the brainstem, and downstream neurons in the nucleus ambiguous (NA), are both necessary and sufficient for chronic allergen-induced airway hyperreactivity. We found that repeated exposures of mice to inhaled allergen activates nTS neurons in a mast cell-, interleukin 4 (IL-4)- and vagal nerve-dependent manner. Single-nucleus RNA-seq of the nTS at baseline and following allergen challenges reveals that a Dbh + population is preferentially activated. Ablation or chemogenetic inactivation of Dbh + nTS neurons blunted, while chemogenetic activation promoted hyperreactivity. Viral tracing indicates that Dbh + nTS neurons, capable of producing norepinephrine, project to the NA, and NA neurons are necessary and sufficient to relay allergen signals to postganglionic neurons that then directly drive airway constriction. Focusing on transmitters, delivery of norepinephrine antagonists to the NA blunted allergen-induced hyperreactivity. Together, these findings provide molecular, anatomical and functional definitions of key nodes of a canonical allergen response circuit. The knowledge opens the possibility of targeted neural modulation as an approach to control refractory allergen-induced airway constriction.
Biopreservation and biobanking
Higgs, EF;Flood, BA;Pyzer, AR;Rouhani, SJ;Trujillo, JA;Gajewski, TF;
PMID: 35771982 | DOI: 10.1089/bio.2021.0169
Biobanking during the COVID-19 pandemic presented unique challenges regarding patient enrollment, sample collection, and experimental analysis. This report details the ways in which we rapidly overcame those challenges to create a robust database of clinical information and patient samples while maintaining clinician and researcher safety. We developed a pipeline using REDCap (Research Electronic Data Capture) to coordinate electronic informed consent, sample collection, immunological assay execution, and data analysis for biobanking samples from patients with COVID-19. We then integrated immunological assay data with clinical data extracted from the electronic health record to link study parameters with clinical readouts. Of the 193 inpatients who participated in this study, 138 consented electronically and 56 provided paper consent. We collected and banked blood samples to measure circulating cytokines and chemokines, peripheral immune cell composition and activation status, anti-COVID-19 antibodies, and germline gene polymorphisms. In addition, we collected DNA and RNA from nasopharyngeal swabs to assess viral titer and microbiome composition by 16S sequencing. The rapid spread and contagious nature of COVID-19 required special considerations and innovative solutions to biobank samples quickly while protecting researchers and clinicians. Overall, this workflow and computational pipeline allowed for comprehensive immune profiling of 193 inpatients infected with COVID-19, as well as 89 outpatients, 157 patients receiving curbside COVID-19 testing, and 86 healthy controls. We describe a novel electronic framework for biobanking and analyzing patient samples during COVID-19, and present insights and strategies that can be applied more broadly to other biobank studies.
Ward, JD;Cornaby, C;Kato, T;Gilmore, RC;Bunch, D;Miller, MB;Boucher, RC;Schmitz, JL;Askin, FA;Scanga, LR;
PMID: 35512490 | DOI: 10.1016/j.placenta.2022.04.006
The effect of SARS-CoV-2 severity or the trimester of infection in pregnant mothers, placentas, and infants is not fully understood.A retrospective, observational cohort study in Chapel Hill, NC of 115 mothers with SARS-CoV-2 and singleton pregnancies from December 1, 2019 to May 31, 2021 via chart review to document the infants' weight, length, head circumference, survival, congenital abnormalities, hearing loss, maternal complications, and placental pathology classified by the Amsterdam criteria.Of the 115 mothers, 85.2% were asymptomatic (n = 37) or had mild (n = 61) symptoms, 13.0% had moderate (n = 9) or severe (n = 6) COVID-19, and 1.74% (n = 2) did not have symptoms recorded. Moderate and severe maternal infections were associated with increased C-section, premature delivery, infant NICU admission, and were more likely to occur in Type 1 (p = 0.0055) and Type 2 (p = 0.0285) diabetic mothers. Only one infant (0.870%) became infected with SARS-CoV-2, which was not via the placenta. Most placentas (n = 63, 54.8%) did not show specific histologic findings; however, a subset showed mild maternal vascular malperfusion (n = 26, 22.6%) and/or mild microscopic ascending intrauterine infection (n = 28, 24.3%). The infants had no identifiable congenital abnormalities, and all infants and mothers survived.Most mothers and their infants had a routine clinical course; however, moderate and severe COVID-19 maternal infections were associated with pregnancy complications and premature delivery. Mothers with pre-existing, non-gestational diabetes were at greatest risk of developing moderate or severe COVID-19. The placental injury patterns of maternal vascular malperfusion and/or microscopic ascending intrauterine infection were not associated with maternal COVID-19 severity.
Gastroenterology Clinics of North America
Meringer, H;Wang, A;Mehandru, S;
| DOI: 10.1016/j.gtc.2022.12.001
The gastrointestinal tract (GI) is targeted by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The present review examines GI involvement in patients with long COVID and discusses the underlying pathophysiological mechanisms that include viral persistence, mucosal and systemic immune dysregulation, microbial dysbiosis, insulin resistance and metabolic abnormalities. Due to the complex and potentially multifactorial nature of this syndrome, rigorous clinical definitions and pathophysiology-based therapeutic approaches are warranted
Zhang Z, Zhong P, Hu F, Barger Z, Ren Y, Ding X, Li S, Weber F, Chung S, Palmiter RD, Dan Y.
PMID: 31031008 | DOI: 10.1016/j.cell.2019.03.041
The perioculomotor (pIII) region of the midbrain was postulated as a sleep-regulating center in the 1890s but largely neglected in subsequent studies. Using activity-dependent labeling and gene expression profiling, we identified pIII neurons that promote non-rapid eye movement (NREM) sleep. Optrode recording showed that pIII glutamatergic neurons expressing calcitonin gene-related peptide alpha (CALCA) are NREM-sleep active; optogenetic and chemogenetic activation/inactivation showed that they strongly promote NREM sleep. Within the pIII region, CALCA neurons form reciprocal connections with another population of glutamatergic neurons that express the peptide cholecystokinin (CCK). Activation of CCK neurons also promoted NREM sleep. Both CALCA and CCK neurons project rostrally to the preoptic hypothalamus, whereas CALCA neurons also project caudally to the posterior ventromedial medulla. Activation of each projection increased NREM sleep. Together, these findings point to the pIII region as an excitatory sleep center where different subsets of glutamatergic neurons promote NREM sleep through both local reciprocal connections and long-range projections.
Mucker, EM;Brocato, RL;Principe, LM;Kim, RK;Zeng, X;Smith, JM;Kwilas, SA;Kim, S;Horton, H;Caproni, L;Hooper, JW;
PMID: 35891268 | DOI: 10.3390/vaccines10071104
To combat the COVID-19 pandemic, an assortment of vaccines has been developed. Nucleic acid vaccines have the advantage of rapid production, as they only require a viral antigen sequence and can readily be modified to detected viral mutations. Doggybone DNA vaccines targeting the spike protein of SARS-CoV-2 have been generated and compared with a traditionally manufactured, bacterially derived plasmid DNA vaccine that utilizes the same spike sequence. Administered to Syrian hamsters by jet injection at two dose levels, the immunogenicity of both DNA vaccines was compared following two vaccinations. Immunized hamsters were then immunosuppressed and exposed to SARS-CoV-2. Significant differences in body weight were observed during acute infection, and lungs collected at the time of euthanasia had significantly reduced viral RNA, infectious virus, and pathology compared with irrelevant DNA-vaccinated controls. Moreover, immune serum from vaccinated animals was capable of neutralizing SARS-CoV-2 variants of interest and importance in vitro. These data demonstrate the efficacy of a synthetic DNA vaccine approach to protect hamsters from SARS-CoV-2.
Chen, DY;Turcinovic, J;Feng, S;Kenney, DJ;Chin, CV;Choudhary, MC;Conway, HL;Semaan, M;Close, BJ;Tavares, AH;Seitz, S;Khan, N;Kapell, S;Crossland, NA;Li, JZ;Douam, F;Baker, SC;Connor, JH;Saeed, M;
PMID: 37095858 | DOI: 10.1016/j.isci.2023.106634
A simple and robust cell culture system is essential for generating authentic SARS-CoV-2 stocks for evaluation of viral pathogenicity, screening of antiviral compounds, and preparation of inactivated vaccines. Evidence suggests that Vero E6, a cell line commonly used in the field to grow SARS-CoV-2, does not support efficient propagation of new viral variants and triggers rapid cell culture adaptation of the virus. We generated a panel of 17 human cell lines overexpressing SARS-CoV-2 entry factors and tested their ability to support viral infection. Two cell lines, Caco-2/AT and HuH-6/AT, demonstrated exceptional susceptibility, yielding highly concentrated virus stocks. Notably, these cell lines were more sensitive than Vero E6 cells in recovering SARS-CoV-2 from clinical specimens. Further, Caco-2/AT cells provided a robust platform for producing genetically reliable recombinant SARS-CoV-2 through a reverse genetics system. These cellular models are a valuable tool for the study of SARS-CoV-2 and its continuously emerging variants.