International journal of molecular sciences
Kovács, DK;Eitmann, S;Berta, G;Kormos, V;Gaszner, B;Pétervári, E;Balaskó, M;
PMID: 37240340 | DOI: 10.3390/ijms24108992
Middle-aged obesity and aging cachexia present healthcare challenges. Central responsiveness to body-weight-reducing mediators, e.g., to leptin, changes during aging in a way, which may promote middle-aged obesity and aging cachexia. Leptin is connected to urocortin 2 (Ucn2), an anorexigenic and hypermetabolic member of the corticotropin family. We aimed to study the role of Ucn2 in middle-aged obesity and aging cachexia. The food intake, body weight and hypermetabolic responses (oxygen consumption, core temperature) of male Wistar rats (3, 6, 12 and 18 months) were tested following intracerebroventricular injections of Ucn2. Following one central injection, Ucn2-induced anorexia lasted for 9 days in the 3-month, 14 days in the 6-month and 2 days in the 18-month group. Middle-aged 12-month rats failed to show anorexia or weight loss. Weight loss was transient (4 days) in the 3-month, 14 days in the 6-month and slight but long-lasting in the 18-month rats. Ucn2-induced hypermetabolism and hyperthermia increased with aging. The age-dependent changes in the mRNA expression of Ucn2 detected by RNAscope in the paraventricular nucleus correlated with the anorexigenic responsiveness. Our results show that age-dependent changes in Ucn2 may contribute to middle-aged obesity and aging cachexia. Ucn2 shows potential in the prevention of middle-aged obesity.
Carbonaro, M;Wang, K;Huang, H;Frleta, D;Patel, A;Pennington, A;Desclaux, M;Moller-Tank, S;Grindley, J;Altarejos, J;Zhong, J;Polites, G;Poueymirou, W;Jaspers, S;Kyratsous, C;Zambrowicz, B;Murphy, A;Lin, JC;Macdonald, LE;Daly, C;Sleeman, M;Thurston, G;Li, Z;
PMID: 37058568 | DOI: 10.1126/sciadv.adf4490
Liver steatosis is an increasing health issue with few therapeutic options, partly because of a paucity of experimental models. In humanized liver rodent models, abnormal lipid accumulation in transplanted human hepatocytes occurs spontaneously. Here, we demonstrate that this abnormality is associated with compromised interleukin-6 (IL-6)-glycoprotein 130 (GP130) signaling in human hepatocytes because of incompatibility between host rodent IL-6 and human IL-6 receptor (IL-6R) on donor hepatocytes. Restoration of hepatic IL-6-GP130 signaling, through ectopic expression of rodent IL-6R, constitutive activation of GP130 in human hepatocytes, or humanization of an Il6 allele in recipient mice, substantially reduced hepatosteatosis. Notably, providing human Kupffer cells via hematopoietic stem cell engraftment in humanized liver mice also corrected the abnormality. Our observations suggest an important role of IL-6-GP130 pathway in regulating lipid accumulation in hepatocytes and not only provide a method to improve humanized liver models but also suggest therapeutic potential for manipulating GP130 signaling in human liver steatosis.
WNT7B Regulates Cholangiocyte Proliferation and Function During Murine Cholestasis
Hepatology communications
Kosar, K;Cornuet, P;Singh, S;Lee, E;Liu, S;Gayden, J;Sato, T;Freyberg, Z;Arteel, G;Nejak-Bowen, K;
PMID: 34558852 | DOI: 10.1002/hep4.1784
We previously identified an up-regulation of specific Wnt proteins in the cholangiocyte compartment during cholestatic liver injury and found that mice lacking Wnt secretion from hepatocytes and cholangiocytes showed fewer proliferating cholangiocytes and high mortality in response to a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet, a murine model of primary sclerosing cholangitis. In vitro studies demonstrated that Wnt7b, one of the Wnts up-regulated during cholestasis, induces proliferation of cholangiocytes in an autocrine manner and increases secretion of proinflammatory cytokines. We hypothesized that loss of Wnt7b may exacerbate some of the complications of cholangiopathies by decreasing the ability of bile ducts to induce repair. Wnt7b-flox mice were bred with Krt19-cre mice to deplete Wnt7b expression in only cholangiocytes (CC) or with albumin-Cre mice to delete Wnt7b expression in both hepatocytes and cholangiocytes (HC + CC). These mice were placed on a DDC diet for 1 month then killed for evaluation. Contrary to our expectations, we found that mice lacking Wnt7b from CC and HC + CC compartments had improved biliary injury, decreased cellular senescence, and lesser bile acid accumulation after DDC exposure compared to controls, along with decreased expression of inflammatory cytokines. Although Wnt7b knockout (KO) resulted in fewer proliferating cholangiocytes, CC and HC + CC KO mice on a DDC diet also had more hepatocytes expressing cholangiocyte markers compared to wild-type mice on a DDC diet, indicating that Wnt7b suppression promotes hepatocyte reprogramming. Conclusion: Wnt7b induces a proproliferative proinflammatory program in cholangiocytes, and its loss is compensated for by conversion of hepatocytes to a biliary phenotype during cholestatic injury.
bioRxiv : the preprint server for biology
Yuan, L;Chen, X;Zhan, H;Gilbert, HL;Zador, AM;
PMID: 36824753 | DOI: 10.1101/2023.02.18.528865
Neurons in the cortex are heterogenous, sending diverse axonal projections to multiple brain regions. Unraveling the logic of these projections requires single-neuron resolution. Although a growing number of techniques have enabled high-throughput reconstruction, these techniques are typically limited to dozens or at most hundreds of neurons per brain, requiring that statistical analyses combine data from different specimens. Here we present axonal BARseq, a high-throughput approach based on reading out nucleic acid barcodes using in situ RNA sequencing, which enables analysis of even densely labeled neurons. As a proof of principle, we have mapped the long-range projections of >8000 mouse primary auditory cortex neurons from a single brain. We identified major cell types based on projection targets and axonal trajectory. The large sample size enabled us to systematically quantify the projections of intratelencephalic (IT) neurons, and revealed that individual IT neurons project to different layers in an area-dependent fashion. Axonal BARseq is a powerful technique for studying the heterogeneity of single neuronal projections at high throughput within individual brains.