Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (88)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • (-) Remove PVALB filter PVALB (47)
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • (-) Remove V-nCoV2019-S filter V-nCoV2019-S (37)
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Fluorescent Multiplex Assay (24) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (21) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Red assay (11) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 LS Assay (9) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Brown Assay (4) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope (3) Apply RNAscope filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (3) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter
  • RNAscope HiPlex12 Reagents Kit (1) Apply RNAscope HiPlex12 Reagents Kit filter
  • RNAscope Multiplex Fluorescent v2 (1) Apply RNAscope Multiplex Fluorescent v2 filter

Research area

  • Neuroscience (47) Apply Neuroscience filter
  • Covid (30) Apply Covid filter
  • Infectious (30) Apply Infectious filter
  • Inflammation (7) Apply Inflammation filter
  • Development (3) Apply Development filter
  • Aging (2) Apply Aging filter
  • behavioral (1) Apply behavioral filter
  • Covid-19 (1) Apply Covid-19 filter
  • diabetes (1) Apply diabetes filter
  • Fear (1) Apply Fear filter
  • Fibrosis (1) Apply Fibrosis filter
  • lncRNA (1) Apply lncRNA filter
  • Memory (1) Apply Memory filter
  • Metabolism (1) Apply Metabolism filter
  • Motor Behaviors (1) Apply Motor Behaviors filter
  • Muscle (1) Apply Muscle filter
  • Other: Endocrinology (1) Apply Other: Endocrinology filter
  • Other: Methods (1) Apply Other: Methods filter
  • Parkinson's Disease (1) Apply Parkinson's Disease filter
  • Psychiatric Disorders (1) Apply Psychiatric Disorders filter
  • Psychiatry (1) Apply Psychiatry filter
  • Reproduction (1) Apply Reproduction filter
  • Schizophrenia (1) Apply Schizophrenia filter
  • Skin (1) Apply Skin filter
  • Stem Cells (1) Apply Stem Cells filter
  • Stress (1) Apply Stress filter

Category

  • Publications (88) Apply Publications filter
Estrogen-related receptor alpha (ERRα) is required for PGC-1α-dependent gene expression in the mouse brain

Neuroscience

2021 Oct 11

McMeekin, LJ;Joyce, KL;Jenkins, LM;Bohannon, BM;Patel, KD;Bohannon, AS;Patel, A;Fox, SN;Simmons, MS;Day, JJ;Kralli, A;Crossman, DK;Cowell, RM;
PMID: 34648866 | DOI: 10.1016/j.neuroscience.2021.10.007

Deficiency in peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) expression or function is implicated in numerous neurological and psychiatric disorders. PGC-1α is required for the expression of genes involved in synchronous neurotransmitter release, axonal integrity, and metabolism, especially in parvalbumin-positive interneurons. As a transcriptional coactivator, PGC-1α requires transcription factors to specify cell-type-specific gene programs; while much is known about these factors in peripheral tissues, it is unclear if PGC-1α utilizes these same factors in neurons. Here, we identified putative transcription factors controlling PGC-1α-dependent gene expression in the brain using bioinformatics, and then validated the role of the top candidate in a knockout mouse model. We transcriptionally profiled cells overexpressing PGC-1α and searched for over-represented binding motifs in the promoters of upregulated genes. Binding sites of the estrogen-related receptor (ERR) family of transcription factors were enriched and blockade of ERRα attenuated PGC-1α-mediated induction of mitochondrial and synaptic genes in cell culture. Localization in the mouse brain revealed enrichment of ERRα expression in parvalbumin-expressing neurons with tight correlation of expression with PGC-1α across brain regions. In ERRα null mice, PGC-1α-dependent genes were reduced in multiple regions, including neocortex, hippocampus, and cerebellum, though not to the extent observed in PGC-1α null mice. Behavioral assessment revealed ambulatory hyperactivity in response to amphetamine and impairments in sensorimotor gating without the overt motor impairment characteristic of PGC-1α null mice. These data suggest that ERRα is required for normal levels of expression of PGC-1α-dependent genes in neurons, but that additional factors may be involved in their regulation. Significance statement The transcription factors with which PGC-1α interacts determine specificity of the transcriptional program it drives across cell populations, but those mediating its functions in parvalbumin-expressing neurons are unknown. Relative to other PGC-1α-interacting transcription factors, ERRα is enriched in parvalbumin-expressing neurons and shows robust spatial and temporal correlation with PGC-1α expression throughout the brain. ERRα is also necessary for PGC-1α-dependent transcription both in vitro and in vivo for metabolic and neuronal transcripts. These data suggest that ERRα is an important player in cell-specific PGC-1α-dependent transcription in the CNS and may play a role in regulating parvalbumin-expressing neuron maturation and function.
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in a Dog in Connecticut in February 2021

Viruses

2021 Oct 23

Lee, D;Helal, Z;Kim, J;Hunt, A;Barbieri, A;Tocco, N;Frasca, S;Kerr, K;Hyeon, J;Chung, D;Risatti, G;
| DOI: 10.3390/v13112141

We report the first detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a 3-month-old dog in Connecticut that died suddenly and was submitted to the state veterinary diagnostic laboratory for postmortem examination. Viral RNA was detected in multiple organs of the dog by reverse transcription real time-PCR (RT-qPCR). Negative and positive sense strands of viral RNA were visualized by in situ hybridization using RNAscope technology. Complete genome sequencing and phylogenetic analysis of the hCoV-19/USA/CT-CVMDL-Dog-1/2021 (CT_Dog/2021) virus were conducted to identify the origin and lineage of the virus. The CT_Dog/2021 virus belonged to the GH/B1.2. genetic lineage and was genetically similar to SARS-CoV-2 identified in humans in the U.S. during the winter of 2020-2021. However, it was not related to other SARS-CoV-2 variants identified from companion animals in the U.S. It contained both the D614G in spike and P323L in nsp12 substitutions, which have become the dominant mutations in the United States. The continued sporadic detections of SARS-CoV-2 in companion animals warrant public health concerns about the zoonotic potential of SARS-CoV-2 and enhance our collective understanding of the epidemiology of the virus.
Acan downregulation in parvalbumin GABAergic cells reduces spontaneous recovery of fear memories

Molecular psychiatry

2023 May 02

Lavertu-Jolin, M;Chattopadhyaya, B;Chehrazi, P;Carrier, D;Wünnemann, F;Leclerc, S;Dumouchel, F;Robertson, D;Affia, H;Saba, K;Gopal, V;Patel, AB;Andelfinger, G;Pineyro, G;Di Cristo, G;
PMID: 37131076 | DOI: 10.1038/s41380-023-02085-0

While persistence of fear memories is essential for survival, a failure to inhibit fear in response to harmless stimuli is a feature of anxiety disorders. Extinction training only temporarily suppresses fear memory recovery in adults, but it is highly effective in juvenile rodents. Maturation of GABAergic circuits, in particular of parvalbumin-positive (PV+) cells, restricts plasticity in the adult brain, thus reducing PV+ cell maturation could promote the suppression of fear memories following extinction training in adults. Epigenetic modifications such as histone acetylation control gene accessibility for transcription and help couple synaptic activity to changes in gene expression. Histone deacetylase 2 (Hdac2), in particular, restrains both structural and functional synaptic plasticity. However, whether and how Hdac2 controls the maturation of postnatal PV+ cells is not well understood. Here, we show that PV+- cell specific Hdac2 deletion limits spontaneous fear memory recovery in adult mice, while enhancing PV+ cell bouton remodeling and reducing perineuronal net aggregation around PV+ cells in prefrontal cortex and basolateral amygdala. Prefrontal cortex PV+ cells lacking Hdac2, show reduced expression of Acan, a critical perineuronal net component, which is rescued by Hdac2 re-expression. Pharmacological inhibition of Hdac2 before extinction training is sufficient to reduce both spontaneous fear memory recovery and Acan expression in wild-type adult mice, while these effects are occluded in PV+-cell specific Hdac2 conditional knockout mice. Finally, a brief knock-down of Acan expression mediated by intravenous siRNA delivery before extinction training but after fear memory acquisition is sufficient to reduce spontaneous fear recovery in wild-type mice. Altogether, these data suggest that controlled manipulation of PV+ cells by targeting Hdac2 activity, or the expression of its downstream effector Acan, promotes the long-term efficacy of extinction training in adults.
Alpha cell TXNIP deletion improves diabetes-associated hyperglycemia and hyperglucagonemia

Endocrinology

2022 Aug 12

Lu, B;Chen, J;Xu, G;Grayson, TB;Jing, G;Jo, S;Shalev, A;
PMID: 35957590 | DOI: 10.1210/endocr/bqac133

Thioredoxin-interacting protein (Txnip) has emerged as a key factor in pancreatic beta cell biology and its upregulation by glucose and diabetes contributes to the impairment in functional beta cell mass and glucose homeostasis. In addition, beta cell deletion of Txnip protects against diabetes in different mouse models. However, while Txnip is ubiquitously expressed, its role in pancreatic alpha cells has remained elusive. We therefore now generated an alpha cell Txnip knockout (aTKO) mouse and assessed the effects on glucose homeostasis. While no significant changes were observed on regular chow, after a 30-week high-fat diet, aTKO animals showed improvement in glucose tolerance and lower blood glucose levels compared to their control littermates. Moreover, in the context of streptozotocin (STZ)-induced diabetes, aTKO mice showed significantly lower blood glucose levels compared to controls. While serum insulin levels were reduced in both control and aTKO mice, STZ-diabetes significantly increased glucagon levels in control mice, but this effect was blunted in aTKO mice. Moreover, glucagon secretion from aTKO islets was >2-fold lower than from control islets, while insulin secretion was unchanged in aTKO islets. At the same time, no change in alpha cell or beta cell numbers or mass was observed and glucagon and insulin expression and content were comparable in isolated islets from aTKO and control mice. Thus, together the current studies suggest that downregulation of alpha cell Txnip is associated with reduced glucagon secretion and that this may contribute to the glucose-lowering effects observed in diabetic aTKO mice.
Identification of Gm15441, a Txnip antisense lncRNA, as a critical regulator in liver metabolic homeostasis

Cell & bioscience

2021 Dec 14

Xin, M;Guo, Q;Lu, Q;Lu, J;Wang, PS;Dong, Y;Li, T;Chen, Y;Gerhard, GS;Yang, XF;Autieri, M;Yang, L;
PMID: 34906243 | DOI: 10.1186/s13578-021-00722-1

The majority of mammalian genome is composed of non-coding regions, where numerous long non-coding RNAs (lncRNAs) are transcribed. Although lncRNAs have been identified to regulate fundamental biological processes, most of their functions remain unknown, especially in metabolic homeostasis. Analysis of our recent genome-wide screen reveals that Gm15441, a thioredoxin-interacting protein (Txnip) antisense lncRNA, is the most robustly induced lncRNA in the fasting mouse liver. Antisense lncRNAs are known to regulate their sense gene expression. Given that Txnip is a critical metabolic regulator of the liver, we aimed to investigate the role of Gm15441 in the regulation of Txnip and liver metabolism.We examined the response of Gm15441 and Txnip under in vivo metabolic signals such as fasting and refeeding, and in vitro signals such as insulin and key metabolic transcription factors. We investigated the regulation of Txnip expression by Gm15441 and the underlying mechanism in mouse hepatocytes. Using adenovirus-mediated liver-specific overexpression, we determined whether Gm15441 regulates Txnip in the mouse liver and modulates key aspects of liver metabolism.We found that the expression levels of Gm15441 and Txnip showed a similar response pattern to metabolic signals in vivo and in vitro, but that their functions were predicted to be opposite. Furthermore, we found that Gm15441 robustly reduced Txnip protein expression in vitro through sequence-specific regulation and translational inhibition. Lastly, we confirmed the Txnip inhibition by Gm15441 in vivo (mice) and found that Gm15441 liver-specific overexpression lowered plasma triglyceride and blood glucose levels and elevated plasma ketone body levels.Our data demonstrate that Gm15441 is a potent Txnip inhibitor and a critical metabolic regulator in the liver. This study reveals the therapeutic potential of Gm15441 in treating metabolic diseases.
Technical note on the exploration of COVID-19 in autopsy material

Journal of clinical pathology

2023 Jan 30

Humphries, MP;Bingham, V;Abdullah Sidi, F;Craig, S;Lara, B;El-Daly, H;O'Doherty, N;Maxwell, P;Lewis, C;McQuaid, S;Lyness, J;James, J;Snead, DRJ;Salto-Tellez, M;
PMID: 36717223 | DOI: 10.1136/jcp-2022-208525

Interrogation of immune response in autopsy material from patients with SARS-CoV-2 is potentially significant. We aim to describe a validated protocol for the exploration of the molecular physiopathology of SARS-CoV-2 pulmonary disease using multiplex immunofluorescence (mIF).The application of validated assays for the detection of SARS-CoV-2 in tissues, originally developed in our laboratory in the context of oncology, was used to map the topography and complexity of the adaptive immune response at protein and mRNA levels.SARS-CoV-2 is detectable in situ by protein or mRNA, with a sensitivity that could be in part related to disease stage. In formalin-fixed, paraffin-embedded pneumonia material, multiplex immunofluorescent panels are robust, reliable and quantifiable and can detect topographic variations in inflammation related to pathological processes.Clinical autopsies have relevance in understanding diseases of unknown/complex pathophysiology. In particular, autopsy materials are suitable for the detection of SARS-CoV-2 and for the topographic description of the complex tissue-based immune response using mIF.
p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex

J Neurosci.

2019 Apr 01

Baho E, Chattopadhyaya B, Lavertu-Jolin M, Mazziotti R, Awad PN, Chehrazi P, Groleau M, Jahannault-Talignani C, Vaucher E, Ango F, Pizzorusso T, Baroncelli L, Di Cristo G.
PMID: 30936240 | DOI: 10.1523/JNEUROSCI.2881-18.2019

By virtue of their extensive axonal arborisation and perisomatic synaptic targeting, cortical inhibitory Parvalbumin (PV) cells strongly regulate principal cell output and plasticity and modulate experience-dependent refinement of cortical circuits during development. An interesting aspect of PV cell connectivity is its prolonged maturation time course, which is completed only by end of adolescence. The p75 neurotrophin receptor (p75NTR) regulates numerous cellular functions, however its role on cortical circuit development and plasticity remains elusive, mainly because localizing p75NTR expression with cellular and temporal resolution has been challenging.By using RNAscope and a modified version of the Proximity Ligation Assay, we found that p75NTR expression in PV cells decreases between the second and fourth postnatal week, at a time when PV cell synapse numbers increase dramatically. Conditional knockout of p75NTR in single PV neurons in vitro and in PV cell networks in vivo causes precocious formation of PV cell perisomatic innervation and perineural nets around PV cell somata, therefore suggesting that p75NTR expression modulates the timing of maturation of PV cell connectivity in the adolescent cortex.Remarkably, we found that PV cells still express p75NTR in adult mouse cortex of both sexes and that its activation is sufficient to destabilize PV cell connectivity and to restore cortical plasticity following monocular deprivation in vivo. Altogether, our results show that p75NTR activation dynamically regulates PV cell connectivity, and represents a novel tool to foster brain plasticity in adults.SIGNIFICANCE STATEMENTIn the cortex, inhibitory, GABA-releasing neurons control the output and plasticity of excitatory neurons. Within this diverse group, parvalbumin-expressing (PV) cells form the larger inhibitory system. PV cell connectivity develops slowly, reaching maturity only at the end of adolescence, however the mechanisms controlling the timing of its maturation are not well understood. We discovered that the expression of the neurotrophin receptor p75NTR in PV cells inhibits the maturation of their connectivity in a cell autonomous fashion, both in vitro and in vivo and that p75NTR activation in adult PV cells promotes their remodelling and restores cortical plasticity. These results reveal a new p75NTR function in the regulation of the time course of PV cell maturation and in limiting cortical plasticity.

Modeling SARS-CoV-2: Comparative Pathology in Rhesus Macaque and Golden Syrian Hamster Models

Toxicologic pathology

2022 Feb 05

Choudhary, S;Kanevsky, I;Yildiz, S;Sellers, RS;Swanson, KA;Franks, T;Rathnasinghe, R;Munoz-Moreno, R;Jangra, S;Gonzalez, O;Meade, P;Coskran, T;Qian, J;Lanz, TA;Johnson, JG;Tierney, CA;Smith, JD;Tompkins, K;Illenberger, A;Corts, P;Ciolino, T;Dormitzer, PR;Dick, EJ;Shivanna, V;Hall-Ursone, S;Cole, J;Kaushal, D;Fontenot, JA;Martinez-Romero, C;McMahon, M;Krammer, F;Schotsaert, M;García-Sastre, A;
PMID: 35128980 | DOI: 10.1177/01926233211072767

Coronavirus disease 2019 (COVID-19) in humans has a wide range of presentations, ranging from asymptomatic or mild symptoms to severe illness. Suitable animal models mimicking varying degrees of clinical disease manifestations could expedite development of therapeutics and vaccines for COVID-19. Here we demonstrate that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection resulted in subclinical disease in rhesus macaques with mild pneumonia and clinical disease in Syrian hamsters with severe pneumonia. SARS-CoV-2 infection was confirmed by formalin-fixed, paraffin-embedded (FFPE) polymerase chain reaction (PCR), immunohistochemistry, or in situ hybridization. Replicating virus in the lungs was identified using in situ hybridization or virus plaque forming assays. Viral encephalitis, reported in some COVID-19 patients, was identified in one macaque and was confirmed with immunohistochemistry. There was no evidence of encephalitis in hamsters. Severity and distribution of lung inflammation were substantially more in hamsters compared with macaques and exhibited vascular changes and virus-induced cytopathic changes as seen in COVID-19 patients. Neither the hamster nor macaque models demonstrated evidence for multisystemic inflammatory syndrome (MIS). Data presented here demonstrate that macaques may be appropriate for mechanistic studies of mild asymptomatic COVID-19 pneumonia and COVID-19-associated encephalitis, whereas Syrian hamsters may be more suited to study severe COVID-19 pneumonia.
Diffuse trophoblast damage is the hallmark of SARS-CoV-2-associated fetal demise

Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc

2021 May 18

Garrido-Pontnou, M;Navarro, A;Camacho, J;Crispi, F;Alguacil-Guillén, M;Moreno-Baró, A;Hernandez-Losa, J;Sesé, M;Ramón Y Cajal, S;Garcia Ruíz, I;Serrano, B;Garcia-Aguilar, P;Suy, A;Ferreres, JC;Nadal, A;
PMID: 34006935 | DOI: 10.1038/s41379-021-00827-5

Placental pathology in SARS-CoV-2-infected pregnancies seems rather unspecific. However, the identification of the placental lesions due to SARS-CoV-2 infection would be a significant advance in order to improve the management of these pregnancies and to identify the mechanisms involved in a possible vertical transmission. The pathological findings in placentas delivered from 198 SARS-CoV-2-positive pregnant women were investigated for the presence of lesions associated with placental SARS-CoV-2 infection. SARS-CoV-2 infection was investigated in placental tissues through immunohistochemistry, and positive cases were further confirmed by in situ hybridization. SARS-CoV-2 infection was also investigated by RT-PCR in 33 cases, including all the immunohistochemically positive cases. Nine cases were SARS-CoV-2-positive by immunohistochemistry, in situ hybridization, and RT-PCR. These placentas showed lesions characterized by villous trophoblast necrosis with intervillous space collapse and variable amounts of mixed intervillous inflammatory infiltrate and perivillous fibrinoid deposition. Such lesions ranged from focal to massively widespread in five cases, resulting in intrauterine fetal death. Two of the stillborn fetuses showed some evidence of SARS-CoV-2 positivity. The remaining 189 placentas did not show similar lesions. The strong association between trophoblastic damage and placenta SARS-CoV-2 infection suggests that this lesion is a specific marker of SARS-CoV-2 infection in placenta. Diffuse trophoblastic damage, massively affecting chorionic villous tissue, can result in fetal death associated with COVID-19 disease.
Glycated ACE2 receptor in diabetes: open door for SARS-COV-2 entry in cardiomyocyte

Cardiovascular diabetology

2021 May 07

D'Onofrio, N;Scisciola, L;Sardu, C;Trotta, MC;De Feo, M;Maiello, C;Mascolo, P;De Micco, F;Turriziani, F;Municinò, E;Monetti, P;Lombardi, A;Napolitano, MG;Marino, FZ;Ronchi, A;Grimaldi, V;Hermenean, A;Rizzo, MR;Barbieri, M;Franco, R;Campobasso, CP;Napoli, C;Municinò, M;Paolisso, G;Balestrieri, ML;Marfella, R;
PMID: 33962629 | DOI: 10.1186/s12933-021-01286-7

About 50% of hospitalized coronavirus disease 2019 (COVID-19) patients with diabetes mellitus (DM) developed myocardial damage. The mechanisms of direct SARS-CoV-2 cardiomyocyte infection include viral invasion via ACE2-Spike glycoprotein-binding. In DM patients, the impact of glycation of ACE2 on cardiomyocyte invasion by SARS-CoV-2 can be of high importance. To evaluate the presence of SARS-CoV-2 in cardiomyocytes from heart autopsy of DM cases compared to Non-DM; to investigate the role of DM in SARS-COV-2 entry in cardiomyocytes. We evaluated consecutive autopsy cases, deceased for COVID-19, from Italy between Apr 30, 2020 and Jan 18, 2021. We evaluated SARS-CoV-2 in cardiomyocytes, expression of ACE2 (total and glycosylated form), and transmembrane protease serine protease-2 (TMPRSS2) protein. In order to study the role of diabetes on cardiomyocyte alterations, independently of COVID-19, we investigated ACE2, glycosylated ACE2, and TMPRSS2 proteins in cardiomyocytes from DM and Non-DM explanted-hearts. Finally, to investigate the effects of DM on ACE2 protein modification, an in vitro glycation study of recombinant human ACE2 (hACE2) was performed to evaluate the effects on binding to SARS-CoV-2 Spike protein. The authors included cardiac tissue from 97 autopsies. DM was diagnosed in 37 patients (38%). Fourth-seven out of 97 autopsies (48%) had SARS-CoV-2 RNA in cardiomyocytes. Thirty out of 37 DM autopsy cases (81%) and 17 out of 60 Non-DM autopsy cases (28%) had SARS-CoV-2 RNA in cardiomyocytes. Total ACE2, glycosylated ACE2, and TMPRSS2 protein expressions were higher in cardiomyocytes from autopsied and explanted hearts of DM than Non-DM. In vitro exposure of monomeric hACE2 to 120 mM glucose for 12 days led to non-enzymatic glycation of four lysine residues in the neck domain affecting the protein oligomerization. The upregulation of ACE2 expression (total and glycosylated forms) in DM cardiomyocytes, along with non-enzymatic glycation, could increase the susceptibility to COVID-19 infection in DM patients by favouring the cellular entry of SARS-CoV2.
Cardiac SARS-CoV-2 infection is associated with pro-inflammatory transcriptomic alterations within the heart

Cardiovascular research

2021 Oct 14

Bräuninger, H;Stoffers, B;Fitzek, ADE;Meißner, K;Aleshcheva, G;Schweizer, M;Weimann, J;Rotter, B;Warnke, S;Edler, C;Braun, F;Roedl, K;Scherschel, K;Escher, F;Kluge, S;Huber, TB;Ondruschka, B;Schultheiss, HP;Kirchhof, P;Blankenberg, S;Püschel, K;Westermann, D;Lindner, D;
PMID: 34647998 | DOI: 10.1093/cvr/cvab322

Cardiac involvement in COVID-19 is associated with adverse outcome. However, it is unclear whether cell specific consequences are associated with cardiac SARS-CoV-2 infection. Therefore, we investigated heart tissue utilizing in situ hybridization, immunohistochemistry and RNA-sequencing in consecutive autopsy cases to quantify virus load and characterize cardiac involvement in COVID-19.In this study, 95 SARS-CoV-2-positive autopsy cases were included. A relevant SARS-CoV-2 virus load in the cardiac tissue was detected in 41/95 deceased (43%). MACE-RNA-sequencing was performed to identify molecular pathomechanisms caused by the infection of the heart. A signature matrix was generated based on the single-cell dataset "Heart Cell Atlas" and used for digital cytometry on the MACE-RNA-sequencing data. Thus, immune cell fractions were estimated and revealed no difference in immune cell numbers in cases with and without cardiac infection. This result was confirmed by quantitative immunohistological diagnosis.MACE-RNA-sequencing revealed 19 differentially expressed genes (DEGs) with a q-value <0.05 (e.g. up: IFI44L, IFT3, TRIM25; down: NPPB, MB, MYPN). The upregulated DEGs were linked to interferon pathways and originate predominantly from endothelial cells. In contrast, the downregulated DEGs originate predominately from cardiomyocytes. Immunofluorescent staining showed viral protein in cells positive for the endothelial marker ICAM1 but rarely in cardiomyocytes. The GO term analysis revealed that downregulated GO terms were linked to cardiomyocyte structure, whereas upregulated GO terms were linked to anti-virus immune response.This study reveals, that cardiac infection induced transcriptomic alterations mainly linked to immune response and destruction of cardiomyocytes. While endothelial cells are primarily targeted by the virus, we suggest cardiomyocyte-destruction by paracrine effects. Increased pro-inflammatory gene expression was detected in SARS-CoV-2-infected cardiac tissue but no increased SARS-CoV-2 associated immune cell infiltration was observed.Cardiac injury can be documented in COVID-19, regardless the direct cardiac virus infection and is known to be associated with outcome. However, the direct virus infection of the myocardium leads to transcriptomic alterations and might therefore additionally contribute to pathophysiological processes in COVID-19. Therefore, consequences of cardiac virus infection need to be investigated in future studies, since they might also contribute to long-term effects in case of survival.
Embryonic Deletion of TXNIP in GABAergic Neurons Enhanced Oxidative Stress in PV+ Interneurons in Primary Somatosensory Cortex of Aging Mice: Relevance to Schizophrenia

Brain sciences

2022 Oct 15

Xue, T;Wang, X;Hu, Y;Cheng, Y;Li, H;Shi, Y;Wang, L;Yin, D;Cui, D;
PMID: 36291328 | DOI: 10.3390/brainsci12101395

The brain is susceptible to perturbations of redox balance, affecting neurogenesis and increasing the risks of psychiatric disorders. Thioredoxin-interacting protein (TXNIP) is an endogenous inhibitor of the thioredoxin antioxidant system. Its deletion or inhibition suggests protection for a brain with ischemic stroke or Alzheimer's disease. Combined with conditional knockout mice and schizophrenia samples, we aimed to investigate the function of TXNIP in healthy brain and psychiatric disorders, which are under-studied. We found TXNIP was remarkedly expressed in the prefrontal cortex (PFC) during healthy mice's prenatal and early postnatal periods, whereas it rapidly decreased throughout adulthood. During early life, TXNIP was primarily distributed in inhibitory and excitatory neurons. Contrary to the protective effect, the embryonic deletion of TXNIP in GABAergic (gamma-aminobutyric acid-ergic) neurons enhanced oxidative stress in PV+ interneurons of aging mice. The deleterious impact was brain region-specific. We also investigated the relationship between TXNIP and schizophrenia. TXNIP was significantly increased in the PFC of schizophrenia-like mice after MK801 administration, followed by oxidative stress. First episode and drug naïve schizophrenia patients with a higher level of plasma TXNIP displayed severer psychiatric symptoms than patients with a low level. We indicated a bidirectional function of TXNIP in the brain, whose high expression in the early stage is protective for development but might be harmful in a later period, associated with mental disorders.

Pages

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?